
What’s the Goal?? 

• Exploratory or descriptive statistics: 

– Organize and interpret volumes of data  

– How big, how does one group differ from another 

 

• Inferential statistics: 

– Assess the underlying physical processes that 

generate environmental data 

– Drug A cures cancer 

 

 



 

• 1. we can never measure the environment with 

complete accuracy and precision  

• 2. the environment is a chaotic system, which is 

a maddening combination of randomness and 

order arising from the characteristics of a 

complex nonlinear system, 

• 3.  our understanding of the environmental 

system is imperfect, so physical (and certainly 

statistical) models do not capture the complete 

behavior of the system.  

 

Causes of Uncertainty 



Population vs. Sample 
 

• we never know the entire population of true values as the environmental 
conditions change in time or space.  

• We hope that we choose a sample of observations for analysis such that each 
element in the population has an equal chance to be selected.  

• Sampling issues 
– Trends 
– serial dependence of environmental data  
– model sample tend to be less variable than observed samples 

 
• Selecting the sample for analysis is a critical aspect of organizing the data and 

depends on the question to be addressed by the study 
• rule of thumb: sample should be large enough to capture the phenomenon of 

interest many times 
• “Degrees of freedom”: number of independent elements in the sample;  

– usually much smaller than the total number of members in the sample in 
environmental data sets 

• Keeping your powder dry- saving data for an independent sample to evaluate and 
confirm your results.  

• Tendency to assume sample is drawn randomly from the population, when sample 
grossly underestimates the variability inherent in the population 
 
 



Why use statistics to describe the environment? 

 

• Environment controlled by innumerable factors, which 

we hope to segregate into a few critical factors from the 

rest  that, for the most part, simply contribute to 

background noise 

• the characteristics of the system include linearly unstable 

processes such as baroclinic waves that cause growth of 

small features into larger ones 

• the characteristics of the system (dynamics, 

thermodynamics) are nonlinear and include discrete step 

functions (i.e., rain/no rain) that can lead to the 

amplification of small errors into large ones 

• the system is dissipative, which guarantees “stationarity”, 

i.e., the climate system will remain stable and not run 

away from the current state  

 



matlab 

• Need to know basic commands 

• How to manipulate small vectors & arrays 

• What .* means versus * and what ./ means 



 



 



 



• Measures of central value 

• Spread 

• Symmetry 

• Robust and reliant 

• How to compute mean and standard 

deviation of a sample 



Number of Opportunities: 2340 (180 days * 13 years) 



Two Statistical Frameworks: 

Frequency vs. Bayesian 
• Frequency- probability of an event is its 

relative frequency after many trials 

• a- number of occurrences of E 

• n- number of opportunities for E to take 

place 

• a/n- relative frequency of E occurring 

• Pr{E}    a/n as n     ∞ 



More concepts 

• Pr{E1∩E2}- joint probability that E1 & E2 occur 

• Pr{E1∩E2}= 0 if E1 & E2 are mutually exclusive 

• Pr{E1 U E2}- probability that E1 OR E2  occur 

• Pr{E1 U E2} =  Pr{E1} + Pr{E2} -  Pr{E1 ∩ E2} 



Conditional Probability 

• Conditional probability: probability of {E2} 

given that {E1} has occurred  

• Pr{E2 | E1} = Pr{E1 ∩ E2} / Pr{E1}  

• E1 is the conditioning event 

• If E1 and E2 are independent of each other, then 

 Pr{E2 | E1} = Pr{E2} and Pr{E1 | E2} = Pr{E1}  

• Fair coin- Pr{heads} = 0.5  
– chance of getting heads on second toss is independent 

of the first 

 Pr{heads | heads} = 0.5 

 Pr{heads} twice = 0.5 * 0.5 = 025 



Empirical vs. Parametric Distributions 

• Empirical 

distributions 

derived from a 

sample of a 

population 



Empirical vs. Parametric Distributions 

• Parameteric 

distributions: 
– Theoretical approach  to 

define populations with 

known properties 

– Can be defined by a 

function with couple 

parameters and 

assumption that 

population composed of 

random events  



Random Continuous Variable x 

• f(x) probability density function (PDF) for a 

random continuous variable x  

• f(x)dx incremental contribution to total 

probability 

 

 

 



Cumulative Density Function of Continuous 

Variable 

• F(X)- total probability below a threshhold 

• F(0) = 50% 

• F(.66) = 75% 

• X(F) – quantile  function- value of random 

variable corresponding to particular 

cumulative probability 

• X(75%) = 0.66 



Gaussian Parametric Distribution 

• PDF 

• CDF 

 

• Two parameters define Gaussian distribution: 

μ and σ 

• Nothing magic or “normal” about the 

Gaussian distribution- it is a mathematical 

construct 



Hypothesis Testing 

• Alta temperature: 

• Empirically: probability of 

temperature less than -15 is low 

• Empirical estimates: 

– Mean= -5.1C 

– Std dev = 5.9C 

•  What are chances of getting 

temp of -20 IF this was a 

population of random numbers 

with that mean and std dev? 



Null hypothesis 

• Null hypothesis: Temp of -20C does 

not differ significantly from mean of -

5.1C 

• 95% of time, random value would be 

within -16 and 6C 

• So 5% of time, random value would be 

outside this range 

• REJECT the null hypothesis accepting 

a 5% risk that we are rejecting the null 

hypothesis incorrectly 

• If null hypothesis: Temp of -15C does 

not differ significantly from mean of -

5.1C 

• CANNOT reject the null hypothesis 

since 95% of the time the value could 

be within -16 and 6C 

 

 

 

 

 



Students’ t test 
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Using t test 
 [h,p,ci,stat]= ttest(valy,0,.05,'left'); 

 where on input valy is the vector of values in each 5-year sample 

 3.8, -3.9, -3.6, -2.9, 2.3 

 0 is the mean value for the null hypothesis 

 .05 is the significance level chosen (5%)  

 „left‟ indicates that we are assuming that we have ruled out that large positive 

anomalies are relevant (the other options are „both‟ a two-tailed test and „right‟ 

where we rule out large negative anomalies, i.e., look for wet periods) 

 Output: 

 h is a flag, 0 means the null hypothesis can not be rejected, 1 means it can be 

rejected 

 p is the significance level corresponding to the t value, the smaller the number 

the better 

 ci is the confidence interval 

 stat- is an array that returns the value of the t statistic, the number of degrees of 

freedom, and the estimated population standard deviation 

  in this case, h= 0., p = .31 (really big), ci= -2.6, sample mean needs to be less than 

-2.6 to reject null hypothesis 

 

 



Estimating Values of One Variable From Another 

• X- Ben Lomond Trail 

• Y- Ben Lomond Peak 

• Want to estimate Peak 

from Trail  

• Use pairs of 

observations from 

sample 

• Need to determine 

coefficient b or r 

• b- slope of linear 

estimate 

• r- linear correlation 
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Definitions 

• Estimate  

• Error of estimate 

• Want        to be a minimum 

• Need to find the value of b that minimizes that sum 

 

 

• The value of b that minimizes the total error in the 

sample 
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Covariance 

• Relates how departures of x and y from respective means are 

related 

• Units  are the product of the units of the two variables x and y 

• Large and positive if sample tendency for: 

–  large + anomalies of x occurring when large + anomalies of y 

AND 

–  large - anomalies of x occurring when large - anomalies of y 

• Large and negative if sample tendency for: 

– large + anomalies of x occurring when large - anomalies of y 

AND 

–  large - anomalies of x occurring when large + anomalies of y 

• Near zero when tendency for cancellation  

– large + anomalies of x occurring when both  large – and + 

anomalies of y AND 

–  large - anomalies of x occurring when both large – and + 

anomalies of y 

 

 



Linear Correlation 

• Dimensionless number relates how departures of x and y from 

respective means are related taking into account variance of x and y 

• r = 1. Linear fits estimates ALL of the variability of the y anomalies 

and x and y vary identically 

• r = -1 perfect linear estimation but when x is positive, y is negative 

and vice versa 

• r = 0. linear fit explains none of the variability of the y anomalies in 

the sample. Best estimate of y is the mean value 
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y’s total sample variance = fraction of variance estimated 

by x + fraction of variance NOT explained by x 



Linear Algebra is your friend 
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Stop and think before blindly computing correlations 

• tendency to use correlation coefficients of 0.5-

0.6 to indicate “useful” association.  

– 75%-64% of the total variance is  NOT 

explained by a linear relationship if the 

correlation is in that range  

• linear correlations can be made large by 

leaving in signals that may be irrelevant to the 

analysis. Annual and diurnal cyles may need 

to be removed  

• large linear correlations may occur simply at 

random, especially if we try to correlate one 

variate with many, many others  

• relationships in the data that are inherently 

nonlinear will not be handled well  

• when two time series are in quadrature with 

one another then the linear correlation is 0  

• Linear correlation provides no information on 

the relative amplitudes of two time series 



Multivariate Linear Correlations 
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Describing the amount of variance explained by a 

linear relationship 

• Sum of squares form: 

• Total variance = explained variance + unexplained 

variance 
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ANOVA 

• summarize whether the variance of variable y explained by 

variable x is large in terms of three measures:  

– mean squared error of the regression (MSE),  

– variance explained by the regression (MSR),  

– and the F ratio that is assumed to have a known parametric 

form.  

• We want:  

1. the scatter around the line of best fit to be small, i.e., that SSE 

and MSE are small 

2.  the percent variance explained by the regression to be large 

(or MSR large) 

3. F ratio is large, which is the ratio of the explained variance to 

that of the error 



F Test of correlation coefficient 

• Signal: explained variance * (n-2) 

• Noise: (1-r2) 



Compositing (Superposed Epoch) 

• Identify common characteristics of a sample of events 

• Simplest- average conditions before, during, and after 

some “rare” event 

• Has an advantage over linear correlation since no linear 

assumption necessary 

• Limitation- to what extent does sample mean used in 

composite differ from population? 

• Day composites: 

http://www.cdc.noaa.gov/Composites/Day/ 

• Monthly/seasonal composites: 

http://www.cdc.noaa.gov/cgi-

bin/data/composites/printpage.pl 

http://www.cdc.noaa.gov/Composites/Day/
http://www.cdc.noaa.gov/cgi-bin/data/composites/printpage.pl
http://www.cdc.noaa.gov/cgi-bin/data/composites/printpage.pl
http://www.cdc.noaa.gov/cgi-bin/data/composites/printpage.pl


Compositing Steps 

• Select the basis for compositing: why are you doing it? 

Physical reasoning hopefully? 

• Define the categories on which you define the events: 

above, below normal? Or …? 

• Compute the means and statistics for each category 

(minimum is standard deviation) 

• Organize and display the results 

• Validate the results:  

– Significance test? t test is the bare minimum to do 

– Reproduce in an independent sample? 

– Are the results sensible in space and time? 

– Is it consistent with theory? 



Model: tool for simulating or predicting the behavior of a dynamical 

system such as the atmosphere 

– heuristic: rule of thumb based on experience or common sense 
Not strictly accurate or always reliable 

Example: If the winds get strong, there’ll be a lot of damage 

– conceptual: framework for understanding physical processes 
based on physical reasoning 

Very useful- that’s what  fills  textbooks 

Example: LIMBS 

– empirical: prediction based on past behavior 
Can tell us what has been likely in the past: record values, typical values, etc. 

Example:  average daily temperature in June vs. January 

– analytic: exact solution to “simplified” equations that describe the 
atmosphere 

Very useful to understand how things work 

Example: many of the conceptual models described in the textbook rely on 
analytic models 

– numerical: integration of governing equations by numerical 
methods subject to specified initial and boundary conditions 

What is used for day-to-day weather forecasting 

Example: Global forecast system (GFS) model 

35 



Comparing Error Growth of Perfect Model to 

Climo and Persistence 

36 

Green- climo forecast 

cyan- persistence 

Blue- exponentional error growth 

Red- slower error growth 

 

 

 

 

 

 

 

Look at forecast_error.m 



Summary 

persistence forecast is better empirical forecast 

than a climatological forecast at short lead times  

 

numerical weather prediction models should out 

perform persistence and climatological forecasts 

at lead times out to some lead time  

 

for all models: model accuracy is often evaluated 

in a least squared sense relative to the unknown 

truth. 
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Course Learning Objectives 

• State and use basic statistical metrics to analyze 

environmental information 

• Develop proficiency to program and use MATLAB 

software as a tool to analyze environmental data sets  

• 5040: State and demonstrate the characteristics of 

effective research; organize, quality control, and find 

relationship(s) among data 

• 6040:State and demonstrate the characteristics of 

effective research: distill a general interest in a subject 

into a specific question/hypothesis that can be 

evaluated; organize the data; find relationship(s) among 

the data; and examine the significance of  the results  

 



• Undergrads: perception of half semester 

classes 

• All: perception of this class- pace, content, 

assignments, expectations, etc. 



Rest not covered unless time 
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Statistical Interpolation 

• A common goal in environmental fields is to take 

observations of environmental  conditions scattered over 

a spatial domain and interpolate/extrapolate those 

values to a regular grid.  

• Simple schemes (Cressman) were developed in the 

atmospheric sciences over 50 years ago to give greater 

weight to observations close to the location at which the 

analysis value is desired compared to more distant 

observations 

• Rather than attempting to interpolate fields without any 

other information, early researchers recognized that 

defining a “first guess” or “background” from a source 

such as a model forecast and weighting corrections 

between the observations and first guess fields was a 

superior approach.  
41 



Objective Analysis 

• A map of a  

   meteorological field 

• Relies on: 

– observations 

– background field 

• Used for: 

– Initialization for a model forecast 

– Situational awareness 

– Verification grid 

 



Discussion Points 
 

• Why are analyses needed? 
– Application driven: data assimilation for NWP (forecasting) vs. 

objective analysis (specifying the present or past) 

 

• What are the goals of the analysis? 
– Define microclimates?  

• Requires attention to details of geospatial information (e.g., limit 
terrain smoothing) 

– Resolve mesoscale/synoptic-scale weather features?  

• Requires good prediction from previous analysis 

 

• How is analysis quality determined? What is truth? 
– Evaluating analysis by withholding observations 



Discussion Points (cont.) 

• What causes large variations in surface temperature, 
wind, moisture, precipitation over short distances? 
– Terrain, convection, etc. 

 

• How well can we observe, analyze, and forecast 
conditions near the surface? 
– What errors should we tolerate? 

 

• To what extent can you rely on surface observations to 
define conditions within 2.5 x 2.5 or 5 x 5 km2 grid box? 
– Do we have enough observations to do so? 



 ABC’s 

- An analysis is more than spatial interpolation 

- A good analysis requires: 

- a good background field supplied by a model forecast 

- observations with sufficient density to resolve critical 

weather and climate features 

- information on the error characteristics of the 

observations and background field 

- appropriate techniques to translate background values 

to observations (termed “forward operators”) 

Analysis value = Background value + observation Correction 



• Successive Corrections 

• Optimal Interpolation 

• Variational (2DVar,3DVar, 4DVar) 

• Kalman or Ensemble Filters 

 

• Kalnay (2003) Chapter 5 – good overview 

of different schemes 

Objective Analysis Approaches 

simple 

complex 



One Approach: Adjust Model Guidance to Match 

Observations (INCA and MatchObsAll) 

 



Potential for Confusion 

• Analysis systems like INCA suggest that 

the analysis should exactly match every 

observation 

• Variational or other analysis values usually 

don’t match surface observations 

– Analysis schemes are intended to develop the 

“best fit” to the differences between the 

observations and the background taking into 

account observational and background errors 

when evaluated over a large sample of cases  

 

 



 

What are appropriate analysis gridpoint values? 

 

 

? 
? ? x 

x x 

•  Inequitable distribution of observations  

•  Differences between the elevations of the analysis gridpoints and the observations 



Predominant Approach: Constrain Imperfect Model 

Guidance by Imperfect Observations 

Background 

Analysis 

Observations 

x,y,z 

V
a
lu
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Truth 



 

Need for balance… 

Models or observations cannot independently define 

weather and weather processes effectively 

 

Analysis 

Background supplied 

by NWP Model 

 

Spatial & Temporal 

Continuity 

Observations 

Specificity 



Recognition of Sources of Errors 

Analysis 

Errors 

NWP Model 

Errors 

Inaccurate ICs 

Incomplete  

Physics 

Smooth terrain 



Recognition of Sources of Errors 

Analysis 

Errors 

Observational 

Errors 

Instrumental 

Representative 



Which is weighted more – observation or model value? 

• The analysis procedure (2D-VAR) “knows” the value and limitations of 
observations using expected observation errors for each data type 

• It “knows” model‟s behavior by using model forecast error statistics at each 
grid point and spatial relationships of error patterns 

• The analysis assesses penalties- 

• Penalty for deviations from observations 

• Larger penalty if observation type is known to have smaller error 

• Penalty for deviations from background 

• Larger penalty if model forecast is usually good 

• Scheme chooses analysis that pays the smallest total penalty for 
observations and model combined 

• We want the analysis to: 

1.Draw closer to better quality data 

2.Retain more details in the background 
from a better quality model 

 But the weighting may be incorrect if error 
statistics are not appropriate for today‟s weather 

 



Background Values 

• Obtained from an analysis: 

– Climatology or analysis from prior hour 

– An objective analysis at a coarser resolution 

– Short term forecast 

• Most objective analysis systems account 

for background errors but approaches vary  



Observations 

• Observations are not perfect… 

– Gross errors 

– Local siting errors 

– Instrument errors 

– Representativeness errors 

• Most objective analysis schemes take into 
account that observations contain errors but 
approaches vary 



Representativeness Errors 

• Observations may be accurate… 

• But the phenomena they are 
measuring may not be resolvable on 
the scale of the analysis 

– This is interpreted as an error of the 
observation not the analysis 

• Common problem over complex terrain 

• Also common when strong inversions 

• Can happen anywhere 

 
Sub-5km terrain variability (m)  

(Myrick and Horel, WAF 2006) 



• Basic example: 

 

 

 

  sb = background error variance 

  so = observation error variance 

  

 W = 0, distrust observation 

 W = 1, trust observation 

  

 

Incorporating Errors 

)( boba TTWTT 
22

2

ob

bW
ss

s






More Info… www.meted.ucar.edu 

 



The actual ABCs… 

• The RTMA analysis equation looks like: 

 

 

 

• Covariances are error correlation measures 
between all pairs of gridpoints 

• Background error covariance matrix can be 
extremely large 

– 2,900 GB memory requirement for continental scale 

– Recursive filters significantly reduce this demand 
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Estimation of Observation and 

Background Error Covariances 
• Temperature errors at two gridpoints may be 

correlated with each other 

• Error covariances specify the influence of 
observation innovations upon surrounding 
gridpoints 

• RTMA used decorrelation lengths of: 
– Horizontal (R): 40 km 

– Vertical (Z): 100 m 

– Now increased to ~80 km and 200 m respectively 

• Significant limitation to specify error covariances 
rather than determine them through ensemble 
methods 



RTMA CONUS Temperature Analysis 



Local Surface Analysis 

• Solving linear system of form Ax=b using 

GMRES- generalized minimal residual 

method 

 

 

 

• In matlab x= gmres(A,b) 
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Assumptions affecting the Analysis 
1. Statistical Assumptions 

• Observation and model errors are assumed to follow normal distributions 

• Works well for common cases, but not extreme 

• Can‟t distinguish different model performances in different regimes 

• Can‟t distinguish different local conditions 

2. Assumed Observation Error 

• Instrument (well known – an engineering matter) 

• Representativeness (not well known) 

• Accurate observation doesn‟t represent average value over entire grid 

box 

• Observation error should vary by weather scenario – but no one knows 

how to do this 

3. Assumed Background Error 

• Based on model performance statistics 

• If model performs differently than it usually does for this type of situation, 

model errors may be inappropriate 

4. Assumed Balance Constraint: Generally Not Known On Mesoscale 

• Mass –Wind linkage is loosely enforced 

• An “initialization” or “spin-up” step is no longer necessary – balance is 

achieved within the analysis itself 



Summary 

• Improving current analyses such as RTMA requires improving 

observations, background fields, and analysis techniques 

– Increase number of high-quality observations available to the 
analysis  

– Improve background forecast/analysis from which the analyses 
begin 

– Adjust assumptions regarding how background errors are related 
from one location to another 

• Future approaches 

– Treat analyses like forecasts: best solutions are ensemble ones 

rather than deterministic ones 

– Depend on assimilation system to define error characteristics of 

modeling system including errors of the background fields 

– Improve forward operators that translate how background values 

correspond to observations 



Trauth Text: What Did/Didn’t Get Covered 

Chapter 1: all 

Chapter 2: all 

Chapter 3: all but discrete theoretical 

distributions, chi squared test 

Chapter 4: 4.1-4.4 

Grad students second half: Chapters 5, 6, 9 

and…(?) 
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