Assignments

- Assignment: due Feb. 8
- Read AMS draft policy statement on communicating science
- http://www.ametsoc.org/policy/draftstatements/comm unicating science draftstatement.pdf
- Summarize and critique the draft statement in a couple paragraphs
- Comment in a couple paragraphs on the role of appropriate use of statistics for communicating science
- Add what you would consider an appropriate summation of the use of statistics to communicate science in a couple of sentences
$2 / 11$
lity of each event ation and location. aticians involved, oms", lemmas, etc. my event is
${ }_{1}$ English: an event or else it is not an
he compound event The probability will happen is 1 .
one or the other of two mutually exclusive events is the sum of their

Temperature below Precipitation below	Temperature above Precipitation below
Temperature below Precipitation above	Temperature above Precipitation above

Figure 4.2. MECE possibilities for seasonal forecasts temperature and precpitation anomalies for a specific location.

Storm Reports: Salt Lake County 1993-2005

Number of Opportunities: 2340 (180 days * 13 years)

More concepts

- $\{E\}^{c}$ - complement of $\{E\}$, event does not occur
- $\operatorname{Pr}\{E\}\}^{c}=1-\{E\}$
- $\operatorname{Pr}\left\{\mathrm{E}_{1} \cap \mathrm{E}_{2}\right\}$ - joint probability that $\mathrm{E}_{1} \& \mathrm{E}_{2}$ occur
- $\operatorname{Pr}\left\{E_{1} \cap E_{2}\right\}=0$ if $E_{1} \& E_{2}$ are mutually exclusive
- $\operatorname{Pr}\left\{E_{1} \cup E_{2}\right\}$ - probability that E_{1} OR E_{2} occur
- $\operatorname{Pr}\left\{\mathrm{E}_{1} \cup \mathrm{E}_{2}\right\}=\operatorname{Pr}\left\{\mathrm{E}_{1}\right\}+\operatorname{Pr}\left\{\mathrm{E}_{2}\right\}-\operatorname{Pr}\left\{\mathrm{E}_{1} \cap \mathrm{E}_{2}\right\}$

Conditional Probability

- Conditional probability: probability of $\left\{\mathrm{E}_{2}\right\}$ given that $\left\{\mathrm{E}_{1}\right\}$ has occurred
- $\operatorname{Pr}\left\{\mathrm{E}_{2} \mid \mathrm{E}_{1}\right\}=\operatorname{Pr}\left\{\mathrm{E}_{1} \cap \mathrm{E}_{2}\right\} / \operatorname{Pr}\left\{\mathrm{E}_{1}\right\}$
- E_{1} is the conditioning event
- If E_{1} and E_{2} are independent of each other, then

$$
\operatorname{Pr}\left\{\mathrm{E}_{2} \mid \mathrm{E}_{1}\right\}=\operatorname{Pr}\left\{\mathrm{E}_{2}\right\} \text { and } \operatorname{Pr}\left\{\mathrm{E}_{1} \mid \mathrm{E}_{2}\right\}=\operatorname{Pr}\left\{\mathrm{E}_{1}\right\}
$$

- Fair coin- $\operatorname{Pr}\{$ heads $\}=0.5$
- chance of getting heads on second toss is independent of the first

Pr\{heads \mid heads $\}=0.5$
Pr\{heads\} twice $=0.5^{*} 0.5=025$

Bayes Theorem

- $\operatorname{Pr}\left\{\mathrm{E}_{2} \mid \mathrm{E}_{1}\right\}=\operatorname{Pr}\left\{\mathrm{E}_{1} \cap \mathrm{E}_{2}\right\} / \operatorname{Pr}\left\{\mathrm{E}_{1}\right\}$ or
- $\operatorname{Pr}\left\{\mathrm{E}_{1} \cap \mathrm{E}_{2}\right\}=\operatorname{Pr}\left\{\mathrm{E}_{2} \mid \mathrm{E}_{1}\right\}^{*} \operatorname{Pr}\left\{\mathrm{E}_{1}\right\}$
- $\operatorname{Pr}\left\{E_{1} \cap E_{2}\right\}=\operatorname{Pr}\left\{E_{1} \mid E_{2}\right\} * \operatorname{Pr}\left\{E_{2}\right\}$ then
- $\operatorname{Pr}\left\{\mathrm{E}_{1} \mid \mathrm{E}_{2}\right\}=\operatorname{Pr}\left\{\mathrm{E}_{2} \mid \mathrm{E}_{1}\right\}{ }^{*} \operatorname{Pr}\left\{\mathrm{E}_{1}\right\} / \operatorname{Pr}\left\{\mathrm{E}_{2}\right\}$
- What is the advantage? Probability of conditioning event E_{2} only computed once

Bayesian Application: how a rational person responds to evidence

$\left.\begin{array}{l|l|l|l|}\hline & \text { Pos Test } & \text { Neg Test } & \text { TOTAL } \\ \hline \text { DRUG USER } & 0.495 \% & 0.005 \% & 0.5 \% \\ \hline \begin{array}{l}\text { NOT DRUG } \\ \text { USER }\end{array} & .995 \% & 98.505 \% & 99.5 \% \\ \hline \text { TOTAL } & 1.49 \% & 98.51 \% & \\ \hline\end{array} \begin{array}{l}\text { What are odds of falsely accusing non drug user? }\end{array}\right]$

Bayesian Application:

	COLD	WARM	TOTAL
DRY	20	60	80
WET	20	0	20
TOTAL	40	60	100
$E_{1}-$ cold			
$E_{2}-$ dry			
$\operatorname{Pr}\left\{E_{1}\right\}-0.4$			
$\operatorname{Pr}\left\{E_{2}\right\}-0.8$			
$\operatorname{Pr}\left\{E_{2} \mid E_{1}\right\}-0.5$			

We can't tell if it is cold or warm
But we know it is dry

$$
\begin{aligned}
\operatorname{Pr}\left\{\mathrm{E}_{1} \mid \mathrm{E}_{2}\right\} & =\operatorname{Pr}\left\{\mathrm{E}_{2} \mid \mathrm{E}_{1}\right\} * \operatorname{Pr}\left\{\mathrm{E}_{1}\right\} / \operatorname{Pr}\left\{\mathrm{E}_{2}\right\}= \\
& =0.5 * 0.4 / 0.8=0.25
\end{aligned}
$$

NAME

\qquad
ATMOS 5040/6040 in Class Assignment
Number of opportunities: 2340
$\left\{\mathrm{E}_{3}\right\}=$ occurrence of winter storms ($142+79=221$)
$\left\{E_{3}\right\}=$ occurrence of convective storms |25+83=108)
$\left\{E_{3}\right\}=$ occurrence of property damage
$(79+113+25=217)$

$\operatorname{Pr}\left[\mathrm{E}_{1}\right]=$	$\operatorname{Pr}\left\{\mathrm{E}_{3}\right\}=$	$\operatorname{Pr}\left(\mathrm{E}_{k}\right]=$	$\operatorname{Pr}\left\{\mathrm{E}_{3} \cap \mathrm{E}_{3}\right\}=$	$\operatorname{Pr}\left[E_{3} \cap E_{2}\right]=$	$\operatorname{Pr}\left[\mathrm{E}_{1} \cap \mathrm{E}_{3}\right]=$
$\operatorname{Pr}\left[\mathbf{E}_{1} \cup \mathbf{E} \mathbf{E}_{2}\right]=$	$\operatorname{Pr}\left[\mathrm{E}_{2} \cup \mathrm{E} \mathrm{E}_{2}\right]=$	$\operatorname{Pr}\left[\mathrm{E}_{1} \cup \mathrm{E} \mathrm{E}_{3}\right]=$	$\operatorname{Pr}\left[E_{2} \mid E_{1}\right]=$	$\operatorname{Pr}\left\{\mathrm{E}_{3} \mid E_{3}\right\}=$	

For as standard deck of 52 cards, desl out all cards in pairs. Pr $\{\mathrm{ace}\}=\quad \operatorname{Pr}\{10-\mathrm{K}\}=\operatorname{Pr}\{2-9\}=$ What is the probsbility of getting a blsckjack for any pair of cards: $\operatorname{Pr}\{$ ace $\cap 10-\mathrm{K}\}=$ What is the probsbility of getting blackjack twice: $\operatorname{Pr}[$ ace $\cap 10-\mathrm{K}\}{ }^{*} \operatorname{Pr}\{$ ace $\cap 10-\mathrm{K}\}=$

Now, play at least 20 hands of blackjack with 3 other people Summarize in a table below your own relative frequencies (a/n) of getting an ace, 10-K, 2-9, blackjack, and two blackjacks. Who in your group was resily lucky?

	n	s	s / n
ace			
$10-\mathrm{K}$			
$2-9$			
blackjack			
Two blackjocks			

Empirical vs. Parametric Distributions

- Empirical distributions derived from a sample of a population

Empirical vs. Parametric Distributions

- Parameteric distributions:
- Theoretical approach to define populations with known properties
- Can be defined by a function with couple parameters and assumption that population composed of random events

Discrete Uniform Distribution

- 6 sided die
- Probability density function:
- $f(1,2,3,4,5$, or 6$)=1 / 6$
- $f(x)=1 / N ;$
$-x$ - one of the sides of the die, random variable
-N - total possible values
$-\mathrm{f}(\mathrm{x}) \mathrm{dx}$ incremental contribution to total probability

$$
\int_{1}^{6} f(x) d x=1
$$

Cumulative Density Function of Discrete Uniform Variable

- $F(X)$ - total probability below a threshhold
- $F(X)=x$ * $1 / N$
- $F(1)=1 / 6$

$$
F(X)=\operatorname{Pr}\{x \leq X\}=\int_{1}^{x} f(x) d x
$$

- $F(2)=2 / 6 \ldots$
- X(F) - quantile function- value of random variable corresponding to particular cumulative probability
- $\mathrm{X}(50 \%)=3$

Random Continuous Variable x

- $f(x)$ probability density function (PDF) for a random continuous variable x
- $\mathrm{f}(\mathrm{x}) \mathrm{dx}$ incremental contribution to total probability

Cumulative Density Function of Continuous

Variable

- $F(X)$ - total probability below a threshhold
- $F(0)=50 \%$
- $F(.66)=75 \%$

$$
F(X)=\operatorname{Pr}\{x \leq X\}=\int_{-\infty}^{x} f(x) d x
$$

- X(F) - quantile function- value of random variable corresponding to particular cumulative probability
- $X(75 \%)=0.66$

Gaussian Parametric Distribution

- PDF $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$
- CDF $\quad F(X)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x$
- Two parameters define Gaussian distribution: μ and σ
- Nothing magic or "normal" about the Gaussian distribution- it is a mathematical construct

Using parametric distributions

- Generate an empirical cumulative probability (CDF)
- Use dfittool to see if there is a good match between the empirical CDF and a particular parametric distribution
- Use the parameters from that parametric distribution to estimate the probabilities of values above below a threshhold or extreme events

Lake Level

Alta-Collins Temperature

- Mean: -5.1474
- Variance: 34.7724

Using normspec: normal density plot

- 68.3\% between -1 and 1
- 95.\% between -2 and 2
- 2.3% of time variable explained by Gaussian distribution > 2 std dev of mean

Using norminv: quantile function

- norminv([0.05,0.95],2,5)
- 90% of total variance between -6.2243 10.2243
- normspec([-6.2243,10.2243],2,5)

Geometric Distribution

- Estimating how likely rare events can happen by chance
 100 year event
- geocdf(x,0.01)- probability for the next event to happen in $1,10,30,100,200,300$ years
- 63% chance in next 100 years
- 12% chance not until 200 years

Klamath River Streamflow

- Weibull parametric fit

Hypothesis Testing

- Alta temperature:
- Empirically: probability of temperature less than -15 is low
- Empirical estimates:
- Mean= -5.1C
- Std dev = 5.9C

- What are chances of getting temp of -20 IF this was a population of random numbers with that mean and std dev?

Null hypothesis

- Null hypothesis: Temp of -20C does not differ significantly from mean of 5.1C
- 95% of time, random value would be within -16 and 6C
- So 5% of time, random value would be outside this range
- REJECT the null hypothesis accepting a 5% risk that we are rejecting the null hypothesis incorrectly
- If null hypothesis: Temp of -15C does not differ significantly from mean of 5.1C
- CANNOT reject the null hypothesis since 95% of the time the value could be within -16 and 6 C

Collins: Confidence Intervals

