Overview

- Introduction to MCSs
 Squall Lines
 Bow Echoes
- Mesoscale Convective Complexes

Definition

- Mesoscale convective systems (MCSs) refer to all organized convective systems larger than supercells
- Some classic convective system types include:
 - squall lines, bow echoes, and mesoscale convective complexes (MCCs)
- MCSs occur worldwide and year-round
- In addition to the severe weather produced by any given cell within the MCS, the systems can generate large areas of heavy rain and/or damaging winds

Examples

Hawaiian Bow Echo

Dryline Squall line in Texas

Note the scale difference!

Examples cont.

MCC initiating over Nebraska

Synoptic Patterns

 Favorable conditions conducive to severe MCSs and MCCs often occur with identifiable synoptic patterns

Environmental Factors

 Both synoptic and mesoscale features can significantly impact MCS structure and evolution

Importance of Shear

For a given CAPE, the strength and longevity of an MCS increases with increasing depth and strength of the vertical wind shear

- For midlatitude environments we can classify Sfc. to 2-3 km AGL shear strengths as
 - weak <10 m/s, mod 10-18 m/s, & strong >18 m/s
- In general, the higher the LFC, the more lowlevel shear is required for a system's cold pool to continue initiating convection

Which Shear Matters?

It is the component of low-level vertical wind shear
 perpendicular to the line that
 is most critical for controlling
 squall line structure & evolution

Squall Lines

Squall Line Definition

 A squall line is any line of convective cells. It may be a few tens of km long or 1000 km long (>500 nm); there is no strict size definition

Initial Organization

Squall lines may either
 be triggered as a line, or
 organize into a line from
 a cluster of cells

Idealized depiction of squall line formation. Modified from Bluestein and Jain, 1985

Lots of Shear/Impact of CAPE

Both severe and nonsevere squall lines usually have lots of low-level shear, but severe lines usually develop in much more unstable environments.

Classic Evolution (with weak shear)

The characteristic squall line life cycle is to evolve from a narrow band of intense convective cells to a broader, weaker system over time weak-Moderate Shear Squall Line Evolution with Low-Level Flow tended to the system over time tended to the system over tended to tended to the system over tended to the system over tended t

Classic Evolution with More Shear

 Stronger shear environments produce stronger long-lived lines
 composed of strong
 leading line

convective cells

and even bow

echoes

Surface Pressure Fields

The COMET Program

Moderate-Strong Shear Squall Line Evolution with Pressure Field

The COMET Program

Vertical Cross Section View

a a that a standard a s

Likely Supercell Locations

 Supercells within lines tend to become bow echoes, but cells at the ends of squall lines can remain supercellular for long periods of time

Later Evolution and the Coriolis Force (in weak-to-moderate shear)

Weak-Moderate Shear with Mid-Level Storm-Relative Flow

The COMET Program

The Rear-Inflow Jet (RIJ)

The RIJ cont.

Later Evolution and the Coriolis Force (in moderate-to-strong shear)

Moderate-Strong Shear with Mid-Level Storm-Relative Flow

The COMET Program

System Cold Pool Motion

a Martin - Andre - Andre - Andre - Martin - Martin - Martin - Martin - Andre - Andre

- The overall propagation speed of a squall line tends to be controlled by the speed of the system cold pool
 - new cells are constantly triggered along its leading edge
- At midlatitudes an "average" cold pool speed is on the order of ~20 m/s (40 kts).

Squall Line Motion

Segment of a long squall line t + 60 min t + 30 min 120 km · Direction of Low-Level Cell Motion Shear Squall Line Motion

A short squall line, < 55 nm long

Tropical Squall Lines

Overall, squall lines in the tropics are structurally very similar to midlatitude squall lines. Notable differences include:

Develop in lower shear, lower LFC environments

Taller convective cells

- system cold pools are generally weaker
- less of a tendency toward asymmetric evolution AND

Most tropical squall lines move from east to west rather than the west to east

Sub-Tropical Squall Lines

Bow Echoes

Bow Echo Definition

Bow echoes are relatively small (20-120 km [10-65 nm] long), bow-shaped systems of convective cells noted for producing long swaths of damaging surface winds.

Bow Echo Evolution

Moderate-Strong Shear Bow Echo Evolution with Mid-Level Storm-Relative Flow

The COMET Program

Rear-Inflow Notch Example

The MARC Signature

Summary of MARC Characteristics:

Horizontal Extent

- One to three locally enhanced convergent areas (velocity differentials) are found embedded within a larger region of convergence extending from 60 to 120 km (32 to 65 nm) in length
- Width
 - 2 to 6 km (1 to 3 nm)

Depth

Average of 6.2 km (from 3 - 9 km or 9,800 - 29,500 ft) in height, with the maximum convergence found in the mid-levels of the storm (between 5 and 5.5 km or 16,400 and 18,000 ft in height)

Magnitude

Typical velocity differences of 25 to 50 m/s (50 to 100 kts)

Bow Echo Environments

in Barren ander einer der 🖅 ber 🖉 1997 ber ein 🖅 Werken andere einer Antolik 🖓 einer Antolik 🖓 👘 🖉 👘 👘 👘 🖓 👘 🖓

bursts. Downbursts "A" and "C" were associated with a bow echo while "B" was associated with a hook echo. Modified from Fujita, 1978

Reasons for Bow Echoes Intensity

Derechoes Definition

If the cumulative impact of the severe wind from one or more bow echoes covers a wide enough and long enough path, the event is referred to as a derecho.

To be classified as a derecho, a single convective system must produce wind damage or gusts greater than 26 m/s (50 kts) within a concentrated area with a major axis length of at least 400 km (250 nm). The severe wind reports must exhibit a chronological progression and there must be at least 3 reports of F1 damage and/or convective wind gusts of 33 m/s (65 kts) or greater separated by at least 64 km (40 nm). Additionally, no more than 3 hours can elapse between successive wind damage or gust events.

Derechoes cont.

 Progressive derections are typically a single bow-shaped system that propagates north of and parallel to a weak east-west oriented stationary boundary

 Serial derectors are most commonly a series of bow-echoes along a squall line (usually located within the warm sector of a cyclone)

Summary

- MCS structure and evolution depend on the characteristics of the environmental buoyancy and shear, as well as the details of the initial forcing mechanism.
- The strength and the degree of organization of most MCSs increases with increasing environmental vertical wind shear values.
- The most significant unifying agent for boundarylayer-based MCSs is the surface cold pool.
 - MCS evolution is heavily controlled by the interaction between the cold pool and the low-level vertical wind shear.
- Since MCSs usually last for > 3 hrs, the Coriolis effect significantly impacts system evolution.

References

<u>http://meted.ucar.edu/convectn/mcs/index.htm</u>

- Hilgendorf, E.R. and R.H. Johnson, 1998: A study of the evolution of mesoscale convective systems using WSR-88D data. Wea. Forecasting, 13, 437-452.
- Houze, R.A., 1977: Structure and Dynamics of a Tropical Squall-Line System. Mon. Wea. Rev., 105, 1540-1567.
- Johns, R.H., 1993: Meteorological conditions associated with bow echo development in convective storms. Wea. Forecasting, 8, 294-299.
- Johnson, R.H., and P.J. Hamilton, 1988: The relationship of surface pressure features to the precipitation and airflow structure of an intense midlatitude squall line. Mon. Wea. Rev., 116, 1444-1472.
- Maddox, R. A., 1983: Large-Scale Meteorological Conditions Associated with Midlatitude, Mesoscale Convective Complexes. Mon. Wea. Rev., 111, 1475-1493.
- Przybylinski, R.W., 1995: The bow echo: Observations, numerical simulations, and severe weather detection methods. Wea. Forecasting, 10, 203-218.