Overview

m Introduction to MCSs

m Squall Lines

m Bow Echoes

m Mesoscale Convective Complexes



Definition

m Mesoscale convective systems (MCSSs) refer to
all organized convective systems larger than
supercells

m Some classic convective system types include:
squall lines, bow echoes, and
mesoscale convective complexes (MCCs)
m MCSs occur worldwide and year-round

= In addition to the severe weather produced by
any given cell within the MCS, the systems can
generate large areas of heavy rain and/or
damaging winds



Examples
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Examples cont.
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Synoptic Patterns

Dwharmic Pattern b

m Favorable conditions conducive to
severe MCSs and MCCs often occur

with identifiable synoptic patterns

Idealized ridlatitude svnoptic-scale situation farvorable for
developrnent of squall lines with extensive bow echo-induced

darmaging winds.
Johns, 1993

Composite surface chart prior to MCC development.
Maddox, 1983




Environmental Factors

m Both synoptic
and mesoscale
features can
significantly impact
MCS structure and
evolution
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Importance of Shear

m For a given CAPE, the strength and longevity of
an MCS increases with increasing depth and
strength of the vertical wind shear

m For midlatitude environments we can classify
Sfc. to 2-3 km AGL shear strengths as
= weak <10 m/s, mod 10-18 m/s, & strong >18 m/s
m In general, the higher the LFC, the more low-

level shear is required for a system’s cold pool
to continue Initiating convection



Which Shear Matters?

Componient of 0-3 ki Shear
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Squall Line Definition

m A squall line is any line
of convective cells. It
may be a few tens of km
long or 1000 km long
(>500 nm); there Is no
strict size definition
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Initial Organization

Squall lines may either
be triggered as a line, or
organize into a line from
a cluster of cells
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Ernbedded Areal
[5 Cases)

/ L
Broken Line ’ .
[14 Cases) ’ P
L4 F ] *
Back Building
[13 Cases) ° .'.' ’
)
-
| | r¥
Broken Areal ‘ & L T
(Bases) | W@ | o]
ry|
B

t=0

T=iut

t=21ut

l[dealized depiction of squall line farrnation.
hodified from Bluestein and Jain, 1985




Lots of Shear/lmpact of CAPE

m Both severe and non-
severe squall lines usually
have lots of low-level
shear, but severe lines
usually develop in much
more unstable
environments.
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Classic Evolution (with weak shear)

m The characteristic squall line life cycle is to evolve

from a narrow
band of intense
convective cells to
a broader, weaker
system over time
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Classic Evolution with More Shear

m Stronger shear environments produce stronger
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Surface Pressure Fields

koderate-Strong Shear Squall Line Evolution with Pressure Field

Weak-Moderate Shear Squall Line Evalution with Pressure Field
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Vertical Cross Section View




Likely Supercell Locations

m Supercells within lines
tend to become bow
echoes, but cells at the
ends of squall lines can
remain supercellular for
long periods of time
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Later Evolution and the Coriolis
Force (in weak-to-moderate shear)

Weak-boderate Shear with bdid-Lewel Storm-Belative Flow
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The Rear-Inflow Jet (RIJ)




The RIJ cont.
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Later Evolution and the Coriolis
Force (In moderate-to-strong shear)
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System Cold Pool Motion

m The overall propagation speed of a squall line
tends to be controlled by the speed of the
system cold pool

= new cells are constantly triggered along its leading
edge

m At midlatitudes an "average" cold pool speed is
on the order of ~20 m/s (40 kts).



Segment of a long squall line
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Tropical Squall Lines

m Overall, squall lines in the tropics are
structurally very similar to midlatitude squall
lines. Notable differences include:

= Develop in lower shear, lower LFC environments
= Taller convective cells
= system cold pools are generally weaker

= less of a tendency toward asymmetric evolution
AND

= Most tropical squall lines move from east to
west rather than the west to east



Sub-Tropical Squall Lines
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Bow Echo Definition

m Bow echoes are
relatively

small (20-120 km [10-65
nm] long), bow-shaped

systems of convective y
cells noted for producingjge#

long swaths of
damaging surface
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Bow Echo Evolution

hdoderate-Strong Shear Bow Echo Evolution sith bid-Level Storm-Relative Flow
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Rear-Inflow Notch Example
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Summary of MARC Characteristics:

m Horizontal Extent

= One to three locally enhanced — — —
convergent areas (velocity
differentials) are found embedded
within a larger region of convergence
extending from 60 to 120 km (32 to
65 nm) in length

m Width

m 2106 km (1 to 3 nm)
m Depth
= Average of 6.2 km (from 3 - 9 km or
9,800 - 29,500 ft) in height, with the
maximum convergence found in the
mid-levels of the storm (between 5
and 5.5 km or 16,400 and 18,000 ft in
height)
= Magnitude
= Typical velocity differences of 25 to 50 m/s (50 to 100 kts)
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Reasons for Bow Echoes Intensity
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Derechoes Definition

m If the cumulative impact of the severe wind from
one or more bow echoes covers a wide enough
and long enough path, the event is referred to
as a derecho.

To be classified as a derecho, a single convective
system must produce wind damage or gusts greater
than 26 m/s (50 kts) within a concentrated area with
a major axis length of at least 400 km (250 nm). The
severe wind reports must exhibit a chronological
progression and there must be at least 3 reports of
F1 damage and/or convective wind gusts of 33 m/s
(65 kts) or greater separated by at least 64 km (40
nm). Additionally, no more than 3 hours can elapse
between successive wind damage or gust events.



Derechoes cont.

m Progressive derechos are typically
a single bow-shaped system that
propagates north of and parallel to :
weak east-west oriented stationary

boundary

m Serial derechos are most commonly
a series of bow-echoes along a
squall line (usually located within
the warm sector of a cyclone)

hdearn wWind

Direction
T

-

120 km
1

Progressive Derecho

hdearn Wind

Directiyﬂ'

120 ki
I

Serial Derechio

= area affected | bodified from Johbs
during lifetime | and Hirk, 1987




Summary

MCS structure anc evolutlon depend on the
characteristics of the environmental buoyancy and
shear, as well as the detalls of the initial forcing
mechanism.

The strength and the degree of organization of most
MCSs increases with increasing environmental
vertical wind shear values.

The most significant unifying agent for boundary-
layer-based MCSs is the surface cold pool.

MCS evolution is heavily controlled by the interaction
between the cold pool and the low-level vertical wind
shear.
Since MCSs usually last for > 3 hrs, the Coriolis
effect significantly impacts system evolution.
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