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The following two graphs describes the entire domain we are interested in:
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Figure 1. Terrain for the entire domain;  (Proj_01.m)
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Figure 2. Background temperature over entire domain;  (Proj_01.m)
Figure 1. and Figure 2. are obtained from Proj_01.m file, which is supplied as an attachment.

Section 1:

a. The observation error covariance matrix is defined as diagonal elements are set to be equal to observation error variance (sigo) and all off-diagonal elements are set to zero.

b. The background error covariance matrix is defined assuming that the errors decorrelate as a gaussian as before. Both horizontal and vertical decorrelations are considered. The ratio between vertical decorrelation scale and horizontal decorrelation scale is assumed to be 1/50.

c. The forward transform operator is defined using a linear interpolation scheme between its two closest points.

Both observation error variance (sigo) and background error variance (sigb) are set to 1. The horizontal decorrelation scale (rad) is set to 10 km. Results are from the truncated data set:
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Figure 3. Background temperature over truncated domain;  (Proj_01.m)
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Figure 4. Horizontal decorrelation scale (rad) = 10 km;

Vertical decorrelation scale (radz) = 200 m; Linear interpolation scheme;  (Proj_02.m)
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Figure 5. Horizontal decorrelation scale = 10 km; Vertical decorrelation scale = 200 m; Original interpolation scheme from template file;  (Proj_03.m)


From Figure 4 and Figure 5 shown above, we can see that the final analysis is not very sensitive to the forward transform operator. The two graphs actually look very similar, although we did observe some small variations, especially at high temperature region. (Source code file: Proj_02.m and Proj_03.m)

Section 2:

a. A 3DVAR analysis using the conjugate gradient method for the truncated domain.
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Figure 6. Horizontal decorrelation scale (rad) = 50 km; 

Observation error variance (sigo) = 1; 

Background error variance (sigb) = 2;  (Proj_04.m)


Comparing Figure 3 and Figure 5, we can see that the background field with relative high temperature (red region in graph) is adjusted the most by the observations.

b. Figure 6, 7 and 8 show that the analysis is pretty sensitive to the background error decorrelation scale (Horizontal decorrelation scale = 5, 20 and 50 km, respectively)
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Figure 7. Horizontal decorrelation scale = 5 km; Observation error variance = 1; Background error variance = 2;  (Proj_04.m)
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Figure 8. Horizontal decorrelation scale = 20 km; Observation error variance = 1; Background error variance = 2;  (Proj_04.m)

c. Figure 9, 10 and 11 show that the analysis is sensitive to the background error variance, but not as much as to the background error decorrelation scale. (Background error variance = 0, 1 and 5, respectively)
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Figure 9. Horizontal decorrelation scale = 10 km; Observation error variance = 1; Background error variance = 0;  (Proj_04.m)
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Figure 10. Horizontal decorrelation scale = 10 km; Observation error variance = 1; Background error variance = 1;  (Proj_04.m)

[image: image11.wmf]-117

-116

-115

-114

-113

-112

-111

-110

-109

39

39.5

40

40.5

41

41.5

42

42.5

43

43.5

44

-5

0

5

10

15


Figure 11. Horizontal decorrelation scale = 10 km; Observation error variance = 1; Background error variance = 5;  (Proj_04.m)

d. Figure 12, 13 and 14 show that the analysis is sensitive to the observation error variance, but not as much as to the background error decorrelation scale. (Observation error variance = 0.1, 1 and 5, respectively)
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Figure 12. Horizontal decorrelation scale = 10 km; Observation error variance = 0.1; Background error variance = 1;  (Proj_04.m)
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Figure 13. Horizontal decorrelation scale = 10 km; Observation error variance = 1; Background error variance = 1;  (Proj_04.m)

[image: image14.wmf]-117

-116

-115

-114

-113

-112

-111

-110

-109

39

39.5

40

40.5

41

41.5

42

42.5

43

43.5

44

-8

-6

-4

-2

0

2

4

6

8

10

12

14


Figure 14. Horizontal decorrelation scale = 10 km; Observation error variance = 5; Background error variance = 1;  (Proj_04.m)

Section 3:


Program Proj_05.m generates an analysis (Figure 15) for the entire domain with horizontal decorrelation scale = 10 km, observation error variance = 1 and background error variance = 1. It requires more than 0.5 GB main memory to build up the background error covariance matrix (Pb). A huge size matrix is immediately transformed to a sparse matrix after being initialized, which saves a lot of memory as well as computational time for CGS function to solve (much faster). From Figure 2 and Figure 15, we can still easily observe that the observations affect the high temperature field (red region) more than the low temperature field (blue region), but not too much.
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Figure 15. Horizontal decorrelation scale = 10 km; Observation error variance = 1; Background error variance = 1;  (Proj_05.m)

Section 4:

1. GMRES method

Another analysis (Figure 16) for the entire domain is obtained using Generalized Minimum Residual method (GMRES) with horizontal decorrelation scale = 10 km, observation error variance = 1 and background error variance = 1 (same settings as before).
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Figure 16. Solution from GMRES method

 Horizontal decorrelation scale = 10 km; Observation error variance = 1; 

Background error variance = 1;  (Proj_06.m)


The CGS and GMRES methods are utilized to solver the linear system. The same tolerance (1.0e-5) is specified for both methods in order to compare them in the time and memory they consumed.  There is no observable difference between Figure 15 and Figure 16, which means both methods solved the linear system successfully. The following table exhibits how the two methods differ in terms of time and memory consumed. GMRES method required much more memory (270MB) than CGS method (130MB), while GMRES (73.7 seconds) is much faster than CGS (123.5 seconds). All the results are generated on a Windows machine with 1 GB memory and an Athlon-XP processor at 2.5 GHz (equivalent to PR3.6GHz).

	Method
	CGS
	GMRES

	Number of Iterations
	1226
	497 

	Memory (MB)
	130MB
	270MB

	Time          (s)
	123.5 
	73.7 


2. Optimal Interpolation solution
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Figure 17. Optimal Interpolation solution

 Horizontal decorrelation scale = 10 km; Observation error variance = 1; 

Background error variance = 1;  (Proj_07.m)


Figure 15 (3DVAR solution) and Figure 17 (OI solution) are actually very similar. In fact, there is no big difference observed between the two solutions. After initiating those required matrices, the OI solution only costs 0.31 second to finish. The bottleneck step in OI is to compute the inverse of matrix ‘a’ (refer to source code file Proj_07.m). Fortunately, the size of matrix ‘a’ is usually small and easy to solve. However, for 3DVAR solution, an iterative method is utilized to solve a large-scale linear system. It is reasonable that 3DVAR solution takes much longer time (about 100 seconds) than OI solution.

Section 5:
RUC:

The Rapid Update Cycle (RUC) is an operational mesoscale data assimilation and numerical forecast system, which assimilates recent observations to provide hourly updates of current conditions (analyses) and short-range numerical forecasts. It has two primary characteristics comparing with other operational numerical weather prediction systems: 

1. The RUC uses a forward intermittent assimilation cycle. Every hour, recent observations are assimilated using the previous 1-h RUC model forecast as a background to produce a new estimate of 3D atmospheric fields.

2. It is using hybrid isentropic-terrain-following vertical coordinate for both its assimilation and forecast model components.
Strength: It is effective in providing more accurate short-range forecasts initialized with recent data than longer-range forecast verifying at the same time. 

Weakness: The RUC requires more observational data to sufficiently resolve 1-h forecast error. The forecast error covariance model may not be able to effectively project the observations onto the true forecast error. The significant mass/momentum adjustment may be required for the numerical model to produce a well-balanced 1-h forecast.

MM5 3DVAR:


MM5 3DVAR provides an analysis via the minimization of a prescribed cost function. The analysis is given by two sources of data: the background and observation. The analysis fit to these data is weighted by estimates of their errors: the background, observation and representiveness (introduced in the observation operator H) error covariance matrices. The cost function assumes that the observation and background error covariances are described using Gaussian probability density function with zero mean error. Correlations between observation and background errors are neglected. Minimization of the cost function gives a best analysis fit to the two sets of source data.


The implementation of MM5 3DVAR is applicable to both synoptic and mesoscale numerical weather prediction. The 3DVAR for MM5 model using tuned background error statistics and truncated vertical error modes on distributed memory platforms results in a fast data assimilation system, which runs efficiently and robustly in operational environments. 


A 3DVAR system for Weather Research and Forecast (WRF) model is current being developed based on the MM5 3DVAR code. Further developments of MM5 3DVAR will allow including new observation types, such as radar radial velocity and GPS radio occultation data. 

