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ABSTRACT

A limited-area three-dimensional variational data assimilation (3DVAR) system applicable to both synoptic
and mesoscale numerical weather prediction is described. The system is designed for use in time-critical real-
time applications and is freely available to the data assimilation community for general research.

The unique features of this implementation of 3DVAR include (a) an analysis space represented by recursive
filters and truncated eigenmodes of the background error covariance matrix, (b) the inclusion of a cyclostrophic
term in 3DVAR’s explicit mass–wind balance equation, and (c) the use of the software architecture of the Weather
Research and Forecast (WRF) model to permit efficient performance on distributed-memory platforms.

The 3DVAR system is applied to a multiresolution, nested-domain forecast system. Resolution and seasonal-
dependent background error statistics are presented. A typhoon bogusing case study is performed to illustrate
the 3DVAR response to a single surface pressure observation and its subsequent impact on numerical forecasts
of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale
Model (MM5). Results are also presented from an initial real-time MM5-based application of 3DVAR.

1. Introduction

Modern numerical weather prediction (NWP) data as-
similation systems use information from a range of
sources in order to provide a best estimate of the at-
mospheric state—the analysis—at a given time. Esti-
mates of atmospheric variables from (incomplete and
imperfect) observation systems may be supplemented
with information from previous forecasts (the so-called
background or first guess), detailed error statistics, and
the laws of physics.

In recent years much effort has been spent in the
development of variational data assimilation systems to
replace previously used schemes, for example, optimum
interpolation (Parrish and Derber 1992; Rabier et al.
2000; Lorenc et al. 2000). Advantages of the variational
approach include (a) the ability to assimilate observed
quantities related nontrivially to standard atmospheric
variables (e.g., radiances) and (b) the imposition of dy-
namic balance either implicitly through the inclusion of
the forecast model itself [four-dimensional variational
data assimilation (4DVAR)] or explicitly through the
use of balance equations (3DVAR).

This paper describes initial results from the three-
dimensional variational data assimilation (3DVAR) sys-
tem designed and built for the nonhydrostatic fifth-gen-
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eration Pennsylvania State University–National Center
for Atmospheric Research Mesoscale Model (MM5)
modeling system (Dudhia 1993). The MM5 model uses
a sigma-type vertical coordinate based on reference
pressure and an ‘‘Arakawa-B’’ grid stagger. MM5 equa-
tions are fully compressible and are implemented nu-
merically using a leapfrog time step and the split-ex-
plicit time scheme of Klemp and Wilhelmson (1978).

The initial goals in the development of 3DVAR for
MM5 include the following.

• Release as a research community data assimilation
system.

• Implementation in the Advanced Operational Aviation
Weather System (AOAWS) of the Taiwan Civil Aero-
nautics Administration (CAA).

• Replacement of the multivariate optimum interpola-
tion (MVOI) system in the operational, multitheater
MM5-based system run by the U.S. Air Force Weather
Agency (AFWA) at Offutt Air Force Base in Omaha,
Nebraska.

AFWA 3DVAR implementation results will be de-
scribed in a future paper. Here, results from 3DVAR
within the triple, two-way nested (135/45/15 km reso-
lution) MM5 domains (Fig. 1) of the AOAWS are de-
scribed.

In addition to the earlier MM5-based motivations, the
MM5 3DVAR system has been adopted as the starting
point for a data assimilation capability for the Weather
Research and Forecasting (WRF) model (Michalakes et
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al. 2001). The WRF model is a multiagency, collabo-
rative effort to build a convective–mesoscale (1–10-km
resolution range) model for use by both research and
operational communities. Current major WRF partners
include NCAR, the National Oceanic and Atmospheric
Administration’s (NOAA)’s National Center for Envi-
ronmental Prediction (NCEP), NOAA Forecast Systems
Laboratory (FSL), AFWA, and the Center for the Anal-
ysis and Prediction of Storms (CAPS) at Oklahoma Uni-
versity. The decision to use MM5 3DVAR as a starting
point for WRF data assimilation was made by the WRF
3DVAR working group (WG4) following an initial as-
sessment of the various 3DVAR codes available. The
choice is based on (i) clarity (e.g., inline documentation,
use of FORTRAN90-derived data types), (ii) portability
to a wide variety of computing systems, and (iii) flex-
ibility to, for example, new observation types and choice
of analysis variables of the MM5 3DVAR system.

In order to focus limited resources on a single data
assimilation system, and to provide a relatively seamless
transition for MM5 data assimilation researchers to
WRF in the future, the 3DVAR system runs in either
the MM5 or WRF environments, the choice being made
through name list options at run time.

Although the MM5 3DVAR code is new, the partic-
ular 3DVAR implementation discussed here is similar
in basic design to that implemented operationally at the
UK Meteorological Office (Lorenc et al. 2000). Further
details of unique aspects of the MM5 3DVAR system
are presented in the following sections. A more com-
plete technical description of the MM5 3DVAR algo-
rithm is contained in Barker et al. (2003). In summary,
the main features are as follows.

• Incremental formulation of the model-space cost func-
tion (Courtier et al. 1994); observations are assimi-
lated to provide analysis increments, which may be
computed at lower resolution than the first guess fore-
cast to reduce computational expense. Also, analysis
imbalance is kept to a minimum as the first guess
forecast, to which (typically small) increments are
added to produce the analysis, is already a balanced,
short-range forecast of the nonlinear model.

• Quasi-Newton minimization (Liu and Nocedal 1989).
Convergence is defined as a specified reduction in the
norm of the cost function gradient (e.g., 1% of initial
value).

• Analysis increments computed on an unstaggered
‘‘Arakawa-A’’ grid. In the MM5/WRF environments,
the input background wind field is interpolated from
the Arakawa-B/C grid. Following minimization, the
unstaggered wind analysis increments are interpolated
to the B/C-grid of MM5/WRF, combined with the
background field and output. Initially, 3DVAR’s grid
was the B-grid of MM5. This was changed to the A-
grid as part of the agreement to use the code as the
starting point for WRF 3DVAR. Tests indicate only

minor impacts of this change on the structure of anal-
ysis increments.

• Analysis vertical levels are those of the input back-
ground forecast. The 3DVAR system is flexible to
either height-based (MM5) or mass-based (WRF) ver-
tical coordinates.

• Preconditioning of the background cost function is via
a ‘‘control variable transform’’ U defined as B 5 UUT

where B is the background error covariance matrix
(see later).

• Control variables include streamfunction, velocity po-
tential, ‘‘unbalanced’’ pressure, and a humidity vari-
able (specific or relative humidity).

• Balance between mass and wind increments is
achieved via a geostrophically and cyclostrophically
balanced pressure derived from the wind increments.
A statistical regression is used to ensure the balance
is used only where it is appropriate (e.g., the balanced
pressure increments are filtered in the Tropics). The
formulation permits the future inclusion of additional
terms, for example, frictional effects.

• ‘‘Climatological’’ background error covariances and
statistical regression coefficients are estimated via the
National Meteorological Center (NMC) method of av-
eraged forecast differences (Parrish and Derber 1992).
Sequences (e.g., 1 month) of MM5 forecast differ-
ences are converted to control variables space, from
which an averaged (in time and longitude) vertical
component of background error covariance is calcu-
lated. This matrix is then decomposed into eigenvec-
tors/values of each control variable. Background error
length scales are estimated for each vertical mode of
each control variable. Background error variances/
length scales are finally tuned using observation-based
estimates of background/observation error.

• Representation of the horizontal component of back-
ground error is via horizontally isotropic and homo-
geneous recursive filters. The vertical component is
applied through projection onto climatologically av-
eraged (in time, longitude, and optionally latitude)
eigenvectors of vertical error estimated via the NMC-
method. Horizontal/vertical errors are nonseparable in
that horizontal scales vary with vertical eigenvectors.

• Parallelization uses the software architecture of WRF
(Michalakes et al. 2001).

Atmospheric observations are both incomplete and
imperfect. The optimal use of observations and prior
(e.g., background) information therefore depends cru-
cially on the accuracy of observation and background
errors. Also, approximations to dynamical and physical
processes are frequently required in practical imple-
mentations of variational data assimilation algorithms.
The accuracy of the assimilation is therefore reduced in
areas where these approximations are inaccurate.

Given the preexistence of an MM5 4DVAR capability
(Zou et al. 1997), it is perhaps necessary to discuss the
reasons for developing a new 3DVAR system for use



APRIL 2004 899B A R K E R E T A L .

with the MM5. The major goal for the project has been
to design a single VAR system suitable for operational
implementation in CAA AOAWS and AFWA environ-
ments. The computation resources required to run MM5
4DVAR are well beyond the available resources of these
applications. Also, a well-designed 3DVAR system pro-
vides a sound base from which to upgrade to a 4DVAR
capability (e.g., 4DVAR for WRF for which the 3DVAR
system described here is also being developed). Many
of the algorithms required by 4DVAR (observation op-
erators, minimization packages, preconditioning meth-
ods, balance constraints, background error covariances,
data assimilation diagnostics, etc.) are contained within
3DVAR, which therefore provides an environment for
researchers to investigate these crucial aspects of the
data assimilation system. The only significant omission
required for 4DVAR is a forecast adjoint model and, in
the case of incremental 4DVAR, the corresponding lin-
ear model used to describe the evolution of finite per-
turbations.

Increases in available computing power now permit
the operational implementation of 4DVAR (Rabier et
al. 2000) and other more computationally intensive tech-
niques, for example, Kalman filters (Houtekamer and
Mitchell 1998; Anderson 2001). However, alternative
uses of increased computing power exist, for example,
ensemble forecast systems or the assimilation of addi-
tional high-density (underused and expensive) obser-
vations. The best use of resources will be application
dependent, but it is probable that 3DVAR will continue
to be a valuable data assimilation tool for research and
training of those new to the field of data assimilation
for the foreseeable future.

The remainder of this paper is laid out as follows. In
section 2, further details of the 3DVAR implementation
are given. Section 3 presents a case study that assesses
the impact of a single surface pressure observation on
the 3DVAR analysis and subsequent forecast evolution
of a hurricane. Example forecast verification from the
AOAWS implementation of 3DVAR is given in section
4. Conclusions are presented in section 5 together with
a summary of plans to extend the capabilities of the
community 3DVAR system.

2. Practical implementation of 3DVAR

In general terms, VAR systems may be categorized
as those data assimilation systems which provide an
analysis xa via the minimization of a prescribed cost
function J(x), (e.g., Ide et al. 1997)

b oJ(x) 5 J 1 J

1
b T b215 (x 2 x ) B (x 2 x )

2

1
o T 21 o1 (y 2 y ) (E 1 F) (y 2 y ). (1)

2

In (1), the analysis x 5 xa represents the a posteriori
maximum likelihood (minimum variance) estimate of
the true state of the atmosphere given two sources of
data: the background (previous forecast) xb and obser-
vations yo (Lorenc 1986). The analysis fit to this data
is weighted by estimates of their errors: B, E, and F are
the background, observation (instrumental), and repre-
sentiveness error covariance matrices, respectively. Re-
presentiveness error is an estimate of inaccuracies in-
troduced in the observation operator H used to transform
the gridpoint analysis x to observation space y 5 H(x).
This error will be resolution dependent and may also
include a contribution from approximations in H.

The cost function (1) assumes that observation and
background error covariances are described using
Gaussian probability density functions (PDFs) with 0
mean error. Non-Gaussian PDFs due, for example, to
nonlinear observation operators, are permitted using an
appropriate nonquadratic version of (1) (e.g., Dharssi et
al. 1992). Correlations between observation and back-
ground errors are neglected in (1) as is typical in 3/
4DVAR systems (Parrish and Derber 1992; Zou et al.
1997; Lorenc et al. 2000). The use of adjoint operations
permits efficient calculation of the multidimensional
gradient of the cost function.

Given a model state x with n degrees of freedom
(number of grid points times number of independent
variables), calculation of the full background J b term
of (1) requires ;O(n 2) calculations. For a typical NWP
model with n 2 ; 1012–1014 direct solution is not fea-
sible in the time slot allotted for data assimilation in
operational applications. One practical solution to re-
duce computational cost is to calculate J b in terms of
control variables defined via the relationship x9 5 Uv,
where x9 5 x 2 xb is the analysis increment. The U
transform is designed to nondimensionalize the vari-
ational problem and also to permit use of efficient fil-
tering techniques that approximate the full background
error covariance matrix. If the U transform is well de-
signed, condition numbers will be small and the prod-
uct UUT will closely match the full background error
covariance matrix B. In terms of analysis increments,
(1) may then be rewritten

b oJ(v) 5 J 1 J

1 1
T o9 T 21 o95 v v 1 (y 2 HUv) (E 1 F) (y 2 HUv),

2 2
(2)

where yo9 5 yo 2 H(xb) is the innovation vector and
H is the linearization of the observation operator H used
in the calculation of yo9.

a. Control variable transforms

In reality, the background error covariance matrix B
may be synoptically dependent. The introduction of
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so-called errors of the day in 3DVAR is possible via,
for example, semigeostrophic grid transformations
(Desroziers 1997), additional control variables, and an-
isotropic recursive filters (Purser et al. 2003b). In
4DVAR, flow-dependent structure functions are im-
plicit through the use of the forecast model as part of
the analysis solution [although a climatological esti-
mate of background error is still applied in the cal-
culation of J b (Rabier et al. 2000)]. Nonvariational data
assimilation systems, for example, ensemble Kalman
filter methods (Houtekamer and Mitchell 1998; An-

derson 2001) implicitly calculate ensemble-based es-
timates of flow-dependent forecast error as part of the
solution. In the application-driven work described
here, resources (both computational and human) permit
only the specification of a climatological estimate for
the background error covariance B.

The ‘‘NMC method’’ (Parrish and Derber 1992) pro-
vides a climatological estimate of B assuming it to be
well approximated by averaged forecast difference (e.g.,
month-long series of 24-h minus 12-h forecasts valid at
the same time) statistics:

b t b t T T f f f f TB 5 (x 2 x )(x 2 x ) 5 « « ; [x (T 1 24) 2 x (T 1 12)][x (T 1 24) 2 x (T 1 12)] . (3)b b

Here, x9 is the true atmospheric state and «b is the back-
ground error. The overbar denotes an average over time
and/or space. The resolution and variable dependence
of the NMC method estimate for B is studied later for
the triple-nested, two-way nesting domains of the Tai-
wanese MM5-based AOAWS. The NMC method esti-
mate of B may also be tuned by comparing with in-
dependent estimates from accumulated observation mi-
nus background (O 2 B) data (Hollingsworth and Lönn-
berg 1986). Time variation of B is here limited to the
calculation of error statistics for individual months/sea-
sons.

The 3DVAR control variable transform x9 5 Uv is
implemented through a series of operations x9 5
UpUyUhv (Lorenc et al. 2000). Each stage of the control
variable transform is discussed in detail in Barker et al.
(2003). The following is a summary.

The horizontal transform Uh is performed using re-
cursive filters (Hayden and Purser 1995; Purser et al.
2003a). A recursive filter, rather than the spectral de-
composition of Lorenc et al. (2000), is employed in
order to facilitate the inclusion of anisotropic, inho-
mogeneous (flow-dependent) error correlations in future
versions—spectral techniques are inherently homoge-
neous. The version of the recursive filter used here pos-
sesses only two free parameters for each control vari-
able: the number N of applications of the filter (N 5 2
defines a second-order autoregressive (SOAR) function
response, as N → ` the response approximates a Gauss-
ian) and the correlation length scale s of the filter. A
value of N 5 6 is used in all applications. In experi-
ments, this was the minimum number of passes required
to remove unphysical ‘‘lozenge’’-shaped correlations in
the wind field.

The background error correlation length scale s is
specified for each variable and for each vertical mode.
Length scales are estimated using the NMC method’s
accumulated forecast difference data processed as a
function of gridpoint separation. A least-squares fit of
the resulting curve to a Gaussian function is then used

to estimate recursive filter length scales. The variable
vertical and resolution dependence of s is illustrated in
Fig. 2 for the 135- and 45-km domains of the AOAWS
for 1 month (March 2000). There is a clear reduction
in s for the 45-km domain relative to the 135-km do-
main. This is expected from differences seen in subjec-
tive comparisons of individual 24-h minus 12-h forecast
difference fields (not shown) for 135- and 45-km do-
mains. A valid question is whether the small-scale fore-
cast differences truly represent background error fea-
tures or are due to artifacts of the numerical forecasts,
for example, boundary conditions, noise, etc. Indeed, a
comparison of length scales calculated via the NMC
method and using observation minus background dif-
ferences has been performed, indicating some disparity
in length scale estimates. Empirical multiplicative tun-
ing factors are therefore applied to the length scales
calculated via the NMC method (ranging between 0.5
and 1 depending on domain, variable). Further details
will be given in a future paper. Also seen in Fig. 2 is
a general trend of increasing length scale as a function
of decreasing pressure—representing the dominance of
synoptic-scale errors away from the boundary layer. The
smaller-scale nature of humidity and wind errors relative
to pressure and temperature fields is noticeable (except
in the stratosphere). Tropopause effects are seen in tem-
perature scales.

The vertical transform Uy is applied via an empirical
orthogonal function (EOF) decomposition of the vertical
component of background error By on model levels k
where By is a K 3 K positive-definite, symmetric matrix
(K 5 number of model levels). Given a domain/time-
averaged estimate of By (via the NMC method), an ei-
gendecomposition By 5 ELET is performed to compute
eigenvectors E and eigenvalues L. The vertical trans-
form Uy is then given by vp 5 Uyvy 5 EL1/2vy that
projects control variable space analysis increments yy

onto structures yp on model levels.
The first eigenvector for each control variable is

shown in Fig. 3 for each of the three nested MM5
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TABLE 1. Impact of truncating 3DVAR’s vertical modes (M , K 5 31) to filter trailing eigenvectors responsible for only 0.1% of error
variance. Results from a test 73 3 91 3 31 domain using Mar 2000 NMC-method statistics.

Variance (%) M (c) M (x) M (pu) M (q) n Iterations J (final) CPU (s)
Memory
(Mbytes)

99.9
100

17
31

17
31

10
31

22
31

43 8438
82 3723

25
24

1.33
1.32

251
420

220
316

FIG. 1. The 135-, 45-, and 15-km nested domains of the MM5-based AOAWS system. 3DVAR
is used in all three domains to initialize MM5 two-way nesting forecasts.

AOAWS domains using March 2000 data. Results are
qualitatively similar to those presented in Ingleby (2001,
his Fig. 7) for global data from the U.K. Met Office’s
‘‘Unified Model.’’ The leading streamfunction eigen-
vector (40%; 42%, 36% of total 135-, 45-, 15-km error)
peaks at jet levels (especially at lower resolution) con-
sistent with errors in the nondivergent, intense winds
expected at jet levels. The leading velocity potential
eigenvector (41%, 51%, 56% of total 135-, 45-, 15-km
error) indicates a strong signal from errors in the di-
vergent wind in the boundary layer, negatively corre-
lated with divergent wind errors in the middle-upper
troposphere. The vertical component of error in unbal-
anced pressure is dominated by the first mode that ac-
counts for 65%, 70%, 71% of the total climatological
error in the 135-, 45-, 15-km domains, respectively. The
error represents a pressure error correlation extending
through much of the troposphere. This will result in the
3DVAR propagation of surface pressure observation in-
formation far into the middle troposphere (see later).
There is little resolution dependence in the fraction of
total specific humidity error explained by the first mode
(50%, 51%, 51% of total 135-, 45-, 15-km error) and

has a maximum magnitude at ;800 hPa. As with the
horizontal length scales discussed previously, the shal-
low nature of the leading humidity mode is consistent
with the smaller-scale nature of humidity relative to
wind and mass variables. Finally, there is little depen-
dence of any of the leading eigenvectors of vertical
background error on horizontal resolution, with the pos-
sible exception of upper-level velocity potential error—
the negative correlation between stratosphere and tro-
posphere of the dominant 135-km mode in Fig. 3b (due
potentially to the imposition of zero integrated mass
divergence in the forecast model) is significantly ex-
aggerated relative to the corresponding higher-resolu-
tion 45- and 15-km structures. Comparison of Figs. 7
and 8 of Ingleby (2001) indicates little difference be-
tween dominant global and tropical velocity potential
vertical modes (calculated using a global model). This
is evidence that the differences seen here may not be
due to the larger region encompassed by the 135-km
domain, but instead may be an effect of resolution and/
or boundary conditions. Further investigations are nec-
essary to provide a more complete answer to this ques-
tion.
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FIG. 2. Model space climatological estimates of background error length scale s for 135-, and
45-km AOAWS domains. (a) Temperature, (b) u-wind, (c) pressure, and (d) specific humidity.
Scales are used (calculated in control variable space) in 3DVAR’s recursive filters.

The projection onto orthogonal eigenvectors reduces
the number of calculations required in the Uy transform
from O(K 2) to O(K). By definition, the leading eigen-
vector (m 5 1) contains the largest contribution to the
background error. Trailing eigenvectors contain the least
information and may be removed to reduce the com-
putational cost of 3DVAR. Table 1 illustrates this for a
sample 3DVAR analysis performed on a 73 3 91, 31-
level test domain. Using all modes (M 5 K 5 31), the
minimization problem has 823 732 (73 3 91 3 31 3
4) degrees of freedom. 3DVAR convergence requires
24 iterations and uses 420s CPU and 316 Mbytes mem-
ory on NCAR’s ‘‘blackforest’’ IBM SP-2 computer.
Truncation of vertical modes to retain 99.9% of the
background error variance results in a significant re-
duction in CPU (40%) and memory (30%) requirements.
As expected, there is little impact on the final results
(iterations and final cost function are very similar). The
truncation of vertical modes therefore results in a sig-
nificant cost reduction with negligible scientific impact.

The physical variable transformation Up involves the
conversion of control variables (c, x, u, and q) to model
variable (u, y, T, p, q) increments. The recovery of pres-
sure p is achieved via the relation p 5 pu 1 Cpb where
the linearized ‘‘balanced’’ pressure pb on a model sur-
face h is given by

2¹ p 5 2= · r(v · = v9 1 v9 · = v 1 f k 3 v9). (4)h b h h h

The inclusion of the cyclostrophic terms [first two in
brackets on rhs of (4)] is unique to this implementation
of 3DVAR and permits an improved balance in regimes
of high curvature (e.g., hurricanes). Variables andr v
represent the mean-field (background) state density and
velocity fields respectively. Equation (4) is solved via
a spectral (fast double sine transform) methods. If only
geostrophic mass/wind balance were imposed, it would
be simpler to derive a balanced wind from the mass
gradient. However, a more sophisticated balance equa-
tion, for example, (4) is easiest to formulate if balanced
mass increments are derived from wind increments. As
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FIG. 3. First eigenvector (m 5 1) of the vertical component of time–domain-averaged background
error covariance matrix for (a) streamfunction, (b) velocity potential, (c) unbalanced pressure, and
(d) specific humidity. The leading mode is plotted for each domain of the triple-nested AOAWS
MM5 application. Mar 2002 forecast difference data used.

FIG. 4. Correlation between pressure increment and ‘‘balanced’’ pressure [derived from wind
increments using (4)]. Horizontal axis is model y direction (approximate latitudes indicated).
Vertical axis is model level (surface to 50 hPa, linear in pressure).
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FIG. 5. Observation and background error variances as calculated from accumulated winter and
summer AOAWS domain 2 O 2 B data: (a) u-wind, (b) temperature. Comparison of observation
errors used in HIRLAM, RUC, and MM5 (default and ‘‘summer tuned’’) 3DVAR systems: (c) u-
wind, (d) temperature.

FIG. 6. Wall-clock time for test 3DVAR run in AFWA’s 140 3 150
3 41 45-km ‘‘T4’’ domain—25 Jan 2002 case study. Times shown
are for runs on NCAR’s IBM SP-2 ‘‘blackforest,’’ with Winterhawk
II nodes.

well as allowing the introduction of the cyclostrophic
term, this formulation allows future experimentation
with more sophisticated balance equations, for example,
including the effects of friction, diabatic heating, etc.

The balanced pressure’s regression coefficient C pro-
vides a statistical filtering of the pb increment in regions
where the balance equation (4) is not appropriate (e.g.,
Tropics). In these regions, the mass/wind analyses are
partially decoupled. Figure 4 plots the correlation be-
tween pressure and balanced pressure pb increments us-
ing 24-h minus 12-h wind and pressure forecast differ-
ences data as increments. One month (March 2000)
MM5 forecast difference data is used from the 135-km
domain of the AOAWS and is averaged over time and
the x-direction. The resulting y–z section gives an in-
dication of the regimes in which 3DVAR’s mass/wind
balance given by (4) is filtered. For example, the low
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FIG. 7. 3DVAR’s analysis increment response to bogus surface pressure observation. Pressure (negative, dashed) and temperature: (a)
surface, (b) vertical x–z cross section. (c) Surface wind speed/vectors, (d) vertical x–z cross section though observation location for y-
wind component.
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FIG. 8. The 48-h (0000 UTC 4 Sep–0000 UTC 6 Sep 2002) surface
central pressure forecasts for Typhoon Sinlaku. Initial 26 to 0 h 3-
hourly 3DVAR/MM5 cycling period also shown. Constant 955-hPa
‘‘report’’ values are from CWB typhoon warning reports.

correlation in the Tropics are consistent with the break-
down of geostrophic balance at low latitudes. The low
correlation near the northern boundary (708N) is an ar-
tifact of using a fast sine transform (pb 5 0 at bound-
aries) in the solution of (4) and should not be used to
infer geostrophic balance is not appropriate at these lat-
itudes (which it is). These effects mean that filtering of
the balanced pressure increments is crucial.

b. Observation preprocessing and quality control

Observations available over the global telecommu-
nications system (GTS) originate from a wide variety
of sources. Errors may be introduced at all stages in-
cluding measurement, reporting practices, transmission,
and decoding. It is essential that careful quality control
(QC) be performed to avoid the assimilation of erro-
neous observations.

An observation preprocessor has been developed to
perform QC of observations. A number of checks are
performed including removal of observations outside
the domain, excluding location/time duplicates and in-
complete observations (e.g., no location), and ensuring
vertical consistency of upper-air profiles. Numerous QC
checks are redone in 3DVAR itself and an ‘‘errorpmax’’
check performed to reject observations whose innova-
tion vector (O 2 B) is greater than 5 times the assumed
observation error standard deviation.

c. Background error tuning

As discussed earlier, the NMC method provides only
an approximation to the climatological component of
background error. Similarly, estimates of observation
errors, supplied in tables from AFWA, may be inac-
curate for a given observation type and resolution. Ide-
ally, representiveness error should be tuned for each
resolution domain and for synoptic situation since strong
local gradients are likely to significantly increase this

component of error. In this section, only a single ex-
ample of tuning is performed.

In this section, results are presented of observation/
background error variance estimates derived from ac-
cumulated east Asian radiosonde observation minus
background (O 2 B) differences processed according
to Hollingsworth and Lönnberg (1986). In this method,
O 2 B station pair correlations are binned as a function
of station separation. Given sufficient data, the resulting
distribution can be used to estimate climatological, iso-
tropic background error covariances as well as obser-
vation error variances. Error estimates from O 2 B data
are used to further tune both background and obser-
vation errors used in 3DVAR. A future paper will de-
scribe a more extensive application of this tuning to-
gether with a complementary ‘‘variational cost function
diagnostic’’ tuning method (Desroziers and Ivanov
2001) using high-density surface observations.

Data is collected from the operational AOAWS for
summer (June–August 2001) and winter (December
2001–February 2002) seasons. In the AOAWS system,
lateral boundary conditions for the largest domain are
taken from the Taiwan Central Weather Bureau’s
(CWB’s) global model. MM5 forecasts are generated
every 3 h and are integrated out to 48 h using 3DVAR
initial conditions computed in ‘‘intermittent cycling’’
mode. In this setup, 3DVAR’s background at 0000 and
1200 UTC is the CWB’s global analysis, whereas for
the other initializations (0300, 0600, 0900, 1500, 1800,
2100 UTC) the background is a 3-h MM5 forecast. Only
‘‘cold-starting’’ data is used in this tuning study, that
is, observations valid at 0000/1200 UTC.

Estimates of radiosonde observation and collocated
background error variances derived from the O 2 B
data for selected pressure levels are given in Figs. 5a,b.
For both wind and temperature, observation errors are
larger than background errors. This is consistent with
the fact that the ‘‘background’’ for 3DVAR at 0000/
1200 UTC is an analysis (which has already assimilated
an unknown number of conventional observations at
relatively low resolution). Thus, the MM5 3DVAR anal-
ysis ‘‘believes’’ the background more than the obser-
vations (s b , s o) and hence produces only small anal-
ysis increments. This conservative approach limits po-
tential problems of overfitting conventional observa-
tions due to assimilating the same observations twice
(in background and 3DVAR analyses). The role of nest-
ed 3DVAR in cold-start mode is to ‘‘add value’’ through
the introduction of new and/or high-resolution obser-
vations. It should be noted that the use of an analysis
as a background field reduces the validity of the as-
sumption of uncorrelated background and observation
errors, used in both the 3DVAR cost function (1) and
in the error tuning described in this section. Given the
final product of our tuning, the observation error vari-
ances seen in Fig. 5, agree reasonably well with those
used in models (which use very different background
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fields), it can be argued that the tuning is not adversely
affected by this assumption.

The cold-starting application described in this paper
is a preliminary step towards full-cycling 3DVAR, in
which the background field is a short-range forecast and
hence its errors should be less correlated with those of
the observations. Other motivations for cycling 3DVAR
include (i) the inclusion of higher-resolution detail in
the first guess field, (ii) a reduction in spinup problems
as the first guess and subsequent forecasts are derived
from the same numerical model, (iii) tighter control
(number, type, quality) of observations assimilated.

Figure 5 indicates a general increase in both obser-
vation and background errors in winter relative to sum-
mer. Thus the processing of observation minus forecast
statistics can be used to introduce seasonal error tuning
factors for both observation and background error.

Comparison of observation errors used in other mod-
els offers a check on the error values produced from
the O 2 B data. Figures 5c and 5d illustrate the com-
parison for wind and temperature errors from the 45-
km AOAWS domain. The ‘‘default’’ values are specified
in tables compiled from NCEP/AFWA values. The O
2 B estimates errors ‘‘ob (Sum)’’ are consistent with
high-resolution limited-area model (HIRLAM) errors
[representiveness error is applied separately in the Rapid
Update Cycle (RUC) 3DVAR (D. Devenyi 2002, per-
sonal communication) explaining the small RUC val-
ues]. The O 2 B estimates of radiosonde temperature
errors also contain a more realistic variation with pres-
sure than the default values. The agreement with ob-
servation error estimates used in independent models
supports the validity of the O 2 B error estimation
method. In turn, this validates the background error val-
ues seen in Figs. 5a and 5b as the observation errors
are calculated as a residual of the O 2 B and background
error variances (Hollingsworth and Lönnberg 1986).

d. Computational optimization

A major effort has been to develop a distributed mem-
ory (DM) capability for 3DVAR using software de-
signed for the Weather Research Forecast model (Mich-
alakes et al. 2001). The 3DVAR system contains a num-
ber of algorithms that pose new challenges to the WRF
software architecture for running on DM systems. First,
the specification of background error covariances via
recursive filters and the use of fast sine transforms in
3DVAR’s balanced pressure calculation (4) requires a
domain decomposition along the entire domain (both
north–south and east–west). Second, the minimization
algorithm requires the parallelization of large vector dot-
products. Finally, the inhomogeneous nature of the ob-
servation network ideally requires an irregular horizon-
tal domain decomposition (although a regular decom-
position is currently used).

The DM speedup achieved running 3DVAR with dif-
fering numbers of processors on NCAR’s IBM-SP

blackforest machine is shown in Fig. 6. The case used
is valid at 1200 UTC on 25 January 2002 in AFWA’s
45-km southwest Asian ‘‘T4’’ 140 3 150 3 41 domain.
Minimization in this case is achieved in 98 iterations.
For this case, wall-clock time for single-processor
3DVAR is 1373 s reducing to 115 s using 64 processors.
Tuning of background error variances and length scales
reduces the number of iterations to convergence from
98 to 49. Although 3DVAR is far from scalable above
16 processors—compare ‘‘perfect’’ scaling with actual
in Fig. 6—the resulting wall-clock time of 58 s is well
within the AFWA operational time-window and is sig-
nificantly faster than the DM MVOI system it replaces
(M. McAtee 2002, personal communication). Further
parallelization may be required in future if the cost of
3DVAR increases considerably, for example, through
the introduction of radiances, larger domains, etc.

The DM 3DVAR code has been tested on a number
of machines including DEC, IBM-SP, Fujitsu VPP5000,
SGI, PC/LINUX, and Alpha/LINUX platforms. Stan-
dard tests performed after each major release include
adjoint–inverse correctness checks, single observation
tests, selected case-study impact, cross-platform checks,
and impact of differing numbers of processors. As well
as outputting the analysis and (optionally) the analysis
increment files, multiple diagnostics are computed, in-
cluding observation usage details, the background fore-
cast/analysis fit (O 2 B, O 2 A) to individual obser-
vation types, analysis increment statistics, and cost func-
tion/gradient minimization information.

3. 3DVAR single observation test: Application to
typhoon bogusing

In this section, the multivariate, three-dimensional na-
ture of 3DVAR’s background error covariances is ex-
amined by studying 3DVAR’s response to a single bogus
surface pressure observation. Following this, the 48-h
forecast impact of the bogus observation on the track
and intensity of a typhoon is presented. The typhoon
chosen for this case study is Sinlaku, which made land-
fall in southeast China in the first week of September
2002. The AOAWS 3DVAR/MM5 implementation (de-
scribed earlier) is used.

The 3DVAR analysis increment response at 1800
UTC 3 September 2002 to a single bogus surface pres-
sure observation of 955 hPa at location (25.68N,
132.08E) is shown in Fig. 7. At this time, the background
is a 6-h, 45-km-resolution MM5 forecast taken from the
operational AOAWS. Bogus central pressure and lo-
cation estimates are taken from CWB typhoon reports
(based on human interpretation of satellite imagery). In
reality, the typhoon is unlikely to maintain the constant
value of 955 hPa over a 48-h period (see Fig. 8) as
estimated in the report. In this experiment, we represent
this uncertainty using two different estimates (1 hPa, 2
hPa) of the observation error assigned to the bogus ob-
servation.
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FIG. 9. The 48-h forecasts of Typhoon Sinlaku valid at 0000 UTC 6 Sep 2002. Experiments (a), (b) NoBogus, (c), (d) PBogus1, and (e),
(f ) PBogus2. (left) Surface pressure (4-hPa contours) and wind vectors; (right) surface wind speed (5 m s21 contours). Here, ‘‘X’’ is the
typhoon’s observed position.
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FIG. 9. (Continued )

The forecast typhoon surface central pressure at 1800
UTC 3 September is 991 hPa, that is, there is an obser-
vation minus background difference of 36 hPa (the usual
QC check on maximum O 2 B is suppressed for bogus
observations). Using a bogus pressure observation error
of 1 hPa (2 hPa), 3DVAR’s surface pressure analysis is
973 hPa (984 hPa) at the typhoon location, that is, there
is an 11-hPa difference in the analyzed central pressure.
This large sensitivity is easily explained by a simple cal-
culation of the gradient of the cost function (1) at min-
imum for a single observation yo. The resulting analysis
central pressure is given by

2 o 2 b 2 2y 5 (s y 1 s y )/(s 1 s ).b o b o (5)

Using yb 5 991 hPa, yo 5 955 hPa, sb 5 1 hPa (derived
from the NMC statistics) and so 5 1 hPa, leads to y 5
973 hPa. Using the PBogus2 value of so 5 2 hPa gives
y 5 984 hPa.

The approximately circular pressure increment field
(Fig. 7a) is a response to the observation of 3DVAR’s
currently isotropic recursive filters. The scale is deter-
mined by the background error length scales estimated
via the NMC method (see section 2). The corresponding
temperature increment is created via hydrostatic balance
and the ideal gas law. The vertical cross section of p, T
shown in Fig. 7b indicates that 3DVAR’s EOF decom-
position of background error propagates the surface in-
formation well into the upper troposphere. Surface cy-
clonic wind increments, consistent with 3DVAR’s filtered
geostrophic/cyclostrophic mass/wind balance (4), are
clearly seen in Fig. 7c. The wind response (maximum

;3 m s21) is significantly subgeostrophic as a result of
the statistical filtering of balanced pressure increments
described earlier. This conclusion follows from a simple
calculation of the magnitude of the geostrophic wind ygeo

5 1/(r f )]p/]x ; 63 m s21 given values of r 5 1 kg
m23, f 5 2V sinf 5 6.3 3 1025 s21 for latitude f 5
258, dp 5 20 hPa, and dx 5 500 km as estimated from
Fig. 7a. Note the slight nonaxisymmetric component of
the wind increment which is a result of the dependence
of balanced pressure on the background wind field in (4).
Figure 7d shows the vertical propagation of wind incre-
ments, again in approximate balance with the pressure
field shown in Fig. 7b.

It should be emphasized that the background error co-
variances producing these structures are climatological
averages and do not specifically represent the forecast
errors associated with a particular typhoon (this will be
possible using ‘‘errors of the day’’ in a later version of
3DVAR). The dependence on the background state in (4)
does introduce some case-dependence and using more
than one observation will also help to define the structure.
Despite this, the current 3DVAR will produce a similar
response to different typhoons that may in reality have
very different structures. However, the current 3DVAR
increments propagate the observed data in a climatolog-
ically and dynamically consistent way.

Attention is now turned to the impact of analysis in-
crements on the subsequent forecast evolution of the ty-
phoon. This short typhoon study is intended to investigate
(a) the persistence of information from a single bogus
surface pressure observation through the forecast when
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assimilated using 3DVAR, and (b) the sensitivity of the
typhoon track/intensity forecast to subtle changes in
3DVAR’s usage of the single bogus observation. Fore-
casts are integrated for 48 h from analyses valid at 0000
UTC 4 September 2002 following two initial 3DVAR/
3-hr-MM5 spinup cycles 1800–2100 UTC, 2100–0000
UTC). Three experiments are performed.

• NoBogus: Standard observations—Surface, TEMP,
SATEM, SATOB, AIREP, Quikscat.

• PBogus1: NoBogus 1 Surface pressure bogus (P 5
955 hPa, error 5 1 hPa).

• PBogus2: NoBogus 1 Surface pressure bogus (P 5
955 hPa, error 5 2 hPa).

Typhoon central pressure values through the forecast are
presented in Fig. 8. The ‘‘saw-tooth’’ appearance in the
26 to 0 h range of Fig. 8 indicates the 3-h cycling MM5
forecast is reacting to the introduction of the bogus ob-
servation in 3DVAR. Two cycles are clearly insufficient
to remove this spinup completely. Without the bogus
pressure observation, the ‘‘NoBogus’’ forecast gradually
deepens through the period from an initial value of 991
to 980 hPa at 0000 UTC on 6 September. The ‘‘PBogus1’’
and ‘‘PBogus2’’ curves indicate that the impact of the
pressure observation is retained throughout the 48-h fore-
cast in both bogus experiments resulting in 48-h forecast
typhoon central pressures of 968–970 hPa for PBogus1–
PBogus2 experiments—respectively, 23/21 hPa lower
than the NoBogus forecast.

Figure 9 presents 48-h MM5 forecasts of Typhoon
Sinlaku valid at 0000 UTC 6 September 2002. The actual
position of the typhoon at this time is denoted ‘‘X.’’
Figures 9a and 9b correspond to the NoBogus experiment
and indicate that in addition to insufficient deepening,
the forecast typhoon is misplaced ;130 km to the south.
In addition to the deepening of the typhoon, the 3DVAR
assimilation of the surface bogus observation also mod-
ifies the track of the typhoon. The stronger pull to the
bogus observation of PBogus1 results in a typhoon po-
sition ;260 km north of that of NoBogus (a positioning
error of 130 km to the north) as seen in Figs. 9c and 9d.
The larger observation error applied in PBogus2, results
in a 48-h typhoon that is only ;50 km from the true
position as seen in the Figs. 9e and 9f.

The right-side panels in Fig. 9 indicate a maximum
surface wind speed in the leading right edge of the ty-
phoon path. Maximum surface wind speeds are 30.1,
35.4, 33.9 m s21 for experiments NoBogus, PBogus1,
and PBogus2, respectively.

The conclusions drawn from this preliminary study
are: (a) the impact of 3DVAR assimilation of a bogus
surface pressure observation does persist through the
forecast, and (b) there is significant sensitivity of the
typhoon forecast (particularly the track) to the way the
bogus observation is assimilated in the 3DVAR initial
conditions.

4. Verification from real-time AOAWS system

Initial real-time deployment of the 3DVAR system
built for MM5 has been geared towards implementations
in the AOAWS and AFWA MM5-based systems. A fu-
ture paper will describe encouraging verification results
from initial AFWA implementations of 3DVAR. In this
section, results from the implementation of 3DVAR in
the MM5-based on AOAWS are discussed. As in the
initial AFWA implementation, no new observation types
are assimilated—differences are due to those in the as-
similation algorithm alone. Unfortunately, many of the
observation types that the 3DVAR system can assimilate
are not yet available in the AOAWS operational data
stream. These observation types include SSM/I retrievals/
radiances, Quikscat oceanic surface wind speed/direction,
and Global Positioning System (GPS) total precipitable
water (TPW). This limits the potential benefits of 3DVAR
in the initial AOAWS implementation. Future work will
assess the impact of these, and other, additional obser-
vations. In this paper, the comparison of 3DVAR against
the previously operational ‘‘LITTLEpR’’ Cressman
scheme (Cressman 1959) records the relative perfor-
mance of these two schemes. This paper does not attempt
to compare our 3DVAR formulation against alternative
modern data assimilation techniques, for example, ob-
servation space 3DVAR (Cohn et al. 1998; Daley and
Barker 2001), 4DVAR (Zou et al. 1997; Rabier et al.
2000), or ensemble Kalman filter techniques (Houteka-
mer and Mitchell 1998; Anderson 2001).

Forecast verification scores for the u-wind component
are shown in Fig. 10 for the 135-, 45-, and 15-km
AOAWS MM5 domains 1–3 (scores for the y-wind com-
ponent are similar). Verification is against radiosonde ob-
servations. The period chosen is 1 week from 0000 UTC
2 September–0000 UTC 9 September 2002 using fore-
casts initialized at 0000/1200 UTC. The 3DVAR system
is set up to cold-start from CWB global analyses at main
synoptic hours (0000/1200 UTC) and to cycle MM5 at
other times, that is, the first guess at intermediate 3-hourly
cycles is a 3-h MM5 forecast. The ‘‘NOOBS’’ run is an
MM5 forecast run from the interpolated CWB analysis.
The 3DVAR improvement relative to NOOBS is a mea-
sure of the added value of the MM5 3DVAR reanalysis.

The analysis (T 1 00) fit to observations is closer for
LITTLEpR than for 3DVAR. As discussed earlier, in a
situation where observation errors are larger than back-
ground errors a very close fit to observations at analysis
time does not necessarily indicate a better analysis. The
degradation of LITTLEpR accuracy relative to 3DVAR
increases for domains 2 and 3 is clearly seen in Fig. 10.
This may well be related to the Cressman scheme’s in-
creasing overfitting of observations for the smaller do-
mains (a single observation is fitted exactly in the Cress-
man scheme). Using 3DVAR, the wind forecast verifi-
cation is improved relative to LITTLEpR without the as-
sociated overfitting at T 1 00 associated with LITTLEpR.
The 3DVAR improvement in wind forecast is largest for
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FIG. 10. Verification of the u-component
of wind for MM5 forecasts against sonde
observations for the period 0000 UTC 2
Sep–0000 UTC 9 Sep 2002. Scores for
AOAWS domains 1–3 (135, 45, 15 km)
shown in (a), (b), and (c), respectively.

the higher-resolution (15 km) domain 3 and extends to
all forecast ranges.

Verification of temperature and moisture fields
shown in Fig. 11 show only a small improvement in
AOAWS forecast verification using 3DVAR (and in-
deed LITTLEpR) analyses. From Fig. 11, there is clear-
ly a significant error in temperature and moisture in
the initial conditions that dominates the subsequent
forecast error growth so the assimilation procedure has
a role to play in reducing forecast error. Work is cur-
rently under way to investigate this feature. One po-
tential problem in the current code is the vertical in-
terpolation in the observation operators from model
levels to observation location as a function of height
rather than pressure—a legacy of the MM5 height-
based system. The actual observed vertical coordinate
for many observation types (e.g., sondes) is pressure
(height is currently derived from pressure introducing
additional error). In preliminary studies this change has

been shown to result in smaller observation increments
(O 2 B) and fewer rejected observations. Further tests
will investigate if the mass field analyses are more
seriously degraded by this effect than the wind anal-
yses.

AOAWS verification has been performed for numer-
ous week-long periods over a 1-yr preoperational testing
period. Results illustrated here are representative of the
general conclusion that 3DVAR provides significant im-
provements in the forecast wind field, but only marginal
impact on mass and moisture fields.

The 3DVAR system runs in ;5 min wall-clock time
using nine processors for the three nested AOAWS do-
mains on the Fujitsu VPP-5000 of CAA. This compares
well with ;8 min wall-clock time for the LITTLEpR
assimilation system running one processor/domain in
parallel. Thus, the 3DVAR system provides improved
forecasts (that will presumably get better still with the
inclusion of additional observation types, for example,
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FIG. 11. (a),(b) Temperature and (c),(d) specific humidity forecast verification against sonde
observations for AOAWS (left) 135-km domain 1 and (right) 45-km domain 2. Same period as
in Fig. 10.

radiances that cannot be assimilated in the LITTLEpR
system) in less wall-clock time than its predecessor at
CAA.

5. Summary and conclusions

This paper describes the practical implementation of
a 3DVAR system developed for the MM5 model and
results from an initial case study and real-time appli-
cations. An overview of the system has been given—
for further details see Barker et al. (2003). The trun-
cation of eigenmodes of the vertical component of the
background error covariance leads to computation sav-
ings of the order of 30%–40%. An assessment of the
resolution dependence of errors in the background fore-
casts (using the NMC-method) using data from the two-
way nesting, 135-, 45-, 15-km domains of the CAA’s
MM5-based AOAWS reveals detailed features, for ex-
ample, variable length scales that are used within

3DVAR to impose detailed, multivariate background er-
ror covariances. The limitation of climatological back-
ground errors will be removed in the near future through
the inclusion of anisotropic recursive filters.

A seasonal study of O 2 B estimates of both back-
ground and observation error variances provides an in-
dependent estimate of climatological errors to those giv-
en by the NMC-method and observation error tables,
respectively. Comparison of O 2 B estimated errors
indicate that in cold-start mode, where the background
is already an analysis, a conservative approach should
be taken in order to avoid overfitting observations. A
future paper will describe the use of observation space
diagnostics to tune a 3DVAR application in ‘‘cycling’’
mode.

Two examples of applications of the 3DVAR system
to the MM5 model have been described. The three-
dimensional, multivariate 3DVAR response to a single
surface pressure observation is presented in the context
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of a typhoon bogussing experiment. This simple appli-
cation illustrates (a) 3DVAR’s multivariate covariances,
(b) the sensitivity of the analysis to prescribed bogus
observation error, and (c) a significant impact of the
bogus observation on the 48-h forecast track and inten-
sity of the typhoon. Results are also presented from one
of the two initial real-time applications of 3DVAR with
MM5. A significant improvement in forecast wind
scores is seen using 3DVAR in the AOAWS, especially
for the higher-resolution domains. Temperature and hu-
midity scores show only a marginal improvement. A
future paper will describe forecast verification results
from the AFWA implementation of 3DVAR, in which
significant improvements in wind, mass, and moisture
fields are found compared with forecasts from the pre-
viously operational MVOI system.

The practical implementation of 3DVAR using tuned
background error statistics and truncated vertical error
modes on distributed memory platforms results in a fast
data assimilation system that runs efficiently and ro-
bustly in operational environments around the world
(United States, Taiwan, and more recently Korea). A
particular challenge has been to maintain this efficiency
on a variety of computational platforms. Of course, this
flexibility is a requirement for the code in the general
research community. The 3DVAR system is freely avail-
able to the data assimilation research community (see
http://www.mmm.ucar.edu/3dvar) and is already being
used by the community in MM5 mode. For example,
Cucurull et al. (2004) describe an application of the code
to the case-study assimilation of ground-based GPS ze-
nith total delay observations. Chen et al. (2003) describe
the impact of the assimilation of SSM/I retrievals (total
precipitable water, surface wind speed) and microwave
radiances on the forecast evolution of Hurricane Danny.

Current NCAR 3DVAR efforts are geared towards
the development of a 3DVAR system for WRF, starting
from the 3DVAR code developed for MM5 described
here. A ‘‘basic’’ version of WRF 3DVAR was released
in June 2003. In addition, new observation types cur-
rently being included in 3DVAR include radar radial
velocity and GPS radio occultation data (Kuo et al.
2000). As well as the obvious extension to 4DVAR for
WRF, it is planned to use the observation preprocessing
and operators developed for 3DVAR in the design of
an ensemble Kalman filter capability for WRF (Ander-
son 2001).
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