# Header section that describes the following GRIB 2 table(s) # # Ind | center | subcenter | Master Tbl Version | Local Tbl Version | #-----+--------+-----------+--------------------+-------------------+ -1 | 255 | 255 | 1 | 1 | # # The table itself # # The precision is controlled by the decimal and binary scale factors. # # The decimal scale factor is the number of digits after the decimal point # that are retained. If negative, precision is reduced by 10**dec (i.e., # -1 would reduce the precision to the nearest factor of 10). # # When the decimal scale factor is 0, the binary scale factor indicates the # precision of the data in bits. # # The grib2 docuementation, available from http://, describes the decimal # and binary scale factors in more detail. # # # #Dis|Cat|Prm| | |Dec |Bin | #cip|gor|Num| WRF Id(s) | Description |Fctr|Fctr| #---+---+---+-----------+------------------------------------------+----+----+ 0 | 0 | 0 | T2,TSK | Temperature | 2 | 0 | 0 | 0 | 2 | TH2,THZ0,T| Potential Temperature | 1 | 0 | 0 | 0 |192| T_INIT | Initial Potential Temperature | 3 | 0 | 0 | 0 |193| RTHFTEN | Temp. Tendency in Grell Cumulus [K/s] | 6 | 0 | 0 | 0 |194| T_BASE | Base State T in Idealized Cases [K] | 2 | 0 | 0 | 0 |195| T_1 | Restart Parameter | 4 | 0 | 0 | 0 |196| T_2 | Restart Parameter | 4 | 0 | 0 | 0 |197| H_DIABATIC| Previous Timestep Condensational heating | 7 | 0 | 0 | 0 |198| RTHCUTEN | Coupled theta tend(cumulus sch)[Pa K s-1]| 3 | 0 | 0 | 0 |199| RTHRATEN | Coupled theta tend due to radia [Pa K/s] | 3 | 0 | 0 | 0 |200| RTHRATLW | Coupled theta tend due to lw rad [Pa K/s]| 3 | 0 | 0 | 0 |201| RTHRATSW | Coupled theta tend due to sw rad [Pa K/s]| 3 | 0 | 0 | 0 |202| MOL | TStar in Similarity theory [K] | 3 | 0 | 0 | 0 |203| THC | Thermal Inertia [Cal /(cm K s^.5)] | 3 | 0 | 0 | 0 |204| RTHBLTEN | Coupled theta tend due to PBL [Pa K/s] | 4 | 0 | 0 | 1 | 0 | QSFC | Specific Humidity [kg/kg] | 5 | 0 | 0 | 1 | 2 |QVAPOR,Q2,QVG|Humidity Mixing Ratio [kg/kg] | 5 | 0 | 0 | 1 | 6 |SFCEVP | Evaporation [kg/m^2] | 3 | 0 | 0 | 1 | 9 | RAINNC | Large-scale precip (non-conv)[Kg/m^2] | 2 | 0 | 0 | 1 | 10| RAINC | Convective precipitation [kg/m^2] | 2 | 0 | 0 | 1 | 13| WEASD,SNOW| Water equivalent of snow depth [kg/m^2] | 2 | 0 | 0 | 1 | 15| SNOWNC | Accumulated total grid scale snow/ice[mm]| 1 | 0 | 0 | 1 | 11|SNOWH,SNOWCU,ACSNOW|Snow depth [m] | 4 | 0 | 0 | 1 | 22| QCLOUD,QCG| Cloud water mixing ratio [kg/kg] | 6 | 0 | 0 | 1 | 23| QICE | Ice water mixing ratio [kg/kg] | 5 | 0 | 0 | 1 | 24| QRAIN | Rain water mixing ratio [kg/kg] | 5 | 0 | 0 | 1 | 25| QSNOW | Snow water mixing ratio [kg/kg] | 5 | 0 | 0 | 1 | 32| QGRAUP | Graupel mixing ratio [kg/kg] | 5 | 0 | 0 | 1 |192| LH | Latent heat flux [W/m^2] | 2 | 0 | 0 | 1 |193| ACSNOM | Accumulated melted snow [cm] | 2 | 0 | 0 | 1 |194| RAINNCV | Large-scale precip rate [kg/m^2/s] | 7 | 0 | 0 | 1 |195| RAINCV | Convective precip rate [kg/m^2/s] | 7 | 0 | 0 | 1 |196| QFX | Upward moisture flux [kg/m^s] | 6 | 0 | 0 | 1 |197| HFX | Upward heat flux at the surface [W/m^2] | 1 | 0 | 0 | 1 |198| QNI | Ice crystal number concentration | 0 | 0 | 0 | 1 |199| QV_BASE | Base State QV in Idealized Cases | 5 | 0 | 0 | 1 |200| CT | Countergradient term [K] | 5 | 0 | 0 | 1 |201| QZ0 | Specific humidity at rough length [kg/kg]| 5 | 0 | 0 | 1 |202| CUPPT | Acc cnv rain since last call to rad | 4 | 0 | 0 | 1 |203| F_ICE_PHY | Fraction of Ice (eta mp state variable) | 2 | 0 | 0 | 1 |204| F_RAIN_PHY| Fraction of Rain (eta mp state variable) | 2 | 0 | 0 | 1 |205|F_RIMEF_PHY| Mass Ratio of Rimed Ice(eta mp variable) | 2 | 0 | 0 | 1 |206| RQVCUTEN | Coupled QV tend(cum sch)[Pa kg kg-1 s-1] | 6 | 0 | 0 | 1 |207| RQRCUTEN | Coupled QR tend(cum sch)[Pa kg kg-1 s-1] | 6 | 0 | 0 | 1 |208| RQCCUTEN | Coupled QC tend(cum sch)[Pa kg kg-1 s-1] | 6 | 0 | 0 | 1 |209| RQSCUTEN | Coupled QS tend(cum sch)[Pa kg kg-1 s-1] | 6 | 0 | 0 | 1 |210| RQICUTEN | Coupled QI tend(cum sch)[Pa kg kg-1 s-1] | 6 | 0 | 0 | 1 |211| RAINBL | Acc pcp over BL time step [kg/m^2] | 2 | 0 | 0 | 1 |212| NCA | Counter of cloud relax in KF | 2 | 0 | 0 | 1 |213| APR_GR | Precip from closure (old grell) [mm/hr] | 4 | 0 | 0 | 1 |214| APR_W | Precip from closure W [mm/hr] | 4 | 0 | 0 | 1 |215| APR_MC | Precip from closure Krish MV [mm/hr] | 4 | 0 | 0 | 1 |216| APR_ST | Precip from closure Stability [mm/hr] | 4 | 0 | 0 | 1 |217| APR_AS | Precip from closure AS-Type [mm/hr] | 4 | 0 | 0 | 1 |218| APR_CAPMA | Precip from max CAP [mm/hr] | 4 | 0 | 0 | 1 |219| APR_CAPME | Precip from mean CAP [mm/hr] | 4 | 0 | 0 | 1 |220| APR_CAPMI | Precip from min CAP [mm/hr] | 4 | 0 | 0 | 1 |221| PR_ENS | Precip rate in Grell | 4 | 0 | 0 | 1 |222| RQVFTEN | Moisture tendency in Grell [kg/s] | 6 | 0 | 0 | 1 |223| CLDEFI | Precipitation efficiency in BMJ | 4 | 0 | 0 | 1 |224| RQVBLTEN | Coupled QV tend due to PBL [Pa kg/(kg s)]| 0 | 24 | 0 | 1 |225| RQCBLTEN | Coupled QC tend due to PBL [Pa kg/(kg s)]| 0 | 24 | 0 | 1 |226| RQIBLTEN | Coupled QI tend due to PBL [Pa kg/(kg s)]| 0 | 24 | 0 | 1 |227| FLQC | Surface exchange coefficient for moisture| 6 | 0 | 0 | 1 |228| QSG | Surface saturation wv mixing ratio[kg/kg]| 6 | 0 | 0 | 1 |229| MAVAIL | Surface moisture availability | 4 | 0 | 0 | 1 |230| SR | Fraction of frozen precip | 2 | 0 | 0 | 1 |231| POTEVP | Accumulated potential evaporation [W/m^2]| 4 | 0 | 0 | 1 |232| SNOPCX | Snow phase change heat flux [W/m^2] | 2 | 0 | 0 | 1 |233| RHOSN | Snow Density [kg/m^3] | 2 | 0 | 0 | 1 |234|QNDROPSOURCE|Droplet number source [#/kg/s] | 3 | 0 | 0 | 1 |235| PRATEC | Convective precip rate[kg/m^2/s] | 7 | 0 | 0 | 1 |236| GRAUPELNC | Accumulated total grid scale graupel [mm]| 1 | 0 | 0 | 2 | 2 | U,U10,UZ0 | U-component of wind [m/s] | 2 | 0 | 0 | 2 | 3 | V,V10,VZ0 | V-component of wind [m/s] | 2 | 0 | 0 | 2 | 7 | WW | Sigma coordinate vertical velocity [s^-1]| 3 | 0 | 0 | 2 | 9 | W | Geometric vertical velocity [m/s] | 4 | 0 | 0 | 2 |192| U_BASE | Base State X Wind in Idealized Cases | 3 | 0 | 0 | 2 |193| V_BASE | Base State Y Wind in Idealized Cases | 3 | 0 | 0 | 2 |194| U_1 | Restart Parameter | 4 | 0 | 0 | 2 |195| U_2 | Restart Parameter | 4 | 0 | 0 | 2 |196| V_1 | Restart Parameter | 4 | 0 | 0 | 2 |197| V_2 | Restart Parameter | 4 | 0 | 0 | 2 |198| W_1 | Restart Parameter | 0 | 24 | 0 | 2 |199| W_2 | Restart Parameter | 0 | 24 | 0 | 2 |200| SFCEXC | Exchange coefficient [m/s] | 5 | 0 | 0 | 2 |201| AKHS | Sfc exchange coefficient for heat [m/s] | 5 | 0 | 0 | 2 |202| AKMS | Sfc exch coefficient for momentum [m/s] | 3 | 0 | 0 | 2 |203| W0AVG | Average VV for KF Cum Scheme [m/s] | 6 | 0 | 0 | 2 |204| MASS_FLUX | Downdraft mass flux in grell [mb/hr] | 4 | 0 | 0 | 2 |205| RUBLTEN | Coupled X-wind tend due to PBL [Pa m/s^2]| 2 | 0 | 0 | 2 |206| RVBLTEN | Coupled X-wind tend due to PBL [Pa m/s^2]| 2 | 0 | 0 | 2 |207| UST | UStar in Similarity theory [m/s] | 4 | 0 | 0 | 2 |208| FLHC | Surface exchange coefficient for heat | 3 | 0 | 0 | 3 | 0 | P,PSFC | Pressure [Pa] | 1 | 0 | 0 | 3 | 1 | PMSL | Pressure reduced to MSL [Pa] | 1 | 0 | 0 | 3 | 4 | PHP | Geopotential [m^2/s^2] | 3 | 0 | 0 | 3 |192| PHB | Base-state geopotential [m^2/s^2] | 0 | 0 | 0 | 3 |193| PH | Perturbation geopotential [m^2/s^2] | 1 | 0 | 0 | 3 |194| MUB | Base-state dry air mass in column [Pa] | 1 | 0 | 0 | 3 |195| MU | Perturbation dry air mass in column [Pa] | 1 | 0 | 0 | 3 |196| MU0 | Initial dry air mass in column [Pa] | 0 | 0 | 0 | 3 |197| PB | Base-state pressure [Pa] | 0 | 0 | 0 | 3 |198| GRDFLX | Ground heat flux [W/m^2] | 1 | 0 | 0 | 3 |199| Z_BASE | Base State Height in Idealized Cases | 5 | 0 | 0 | 3 |200| PH_1 | Restart Parameter | 3 | 0 | 0 | 3 |201| PH_2 | Restart Parameter | 3 | 0 | 0 | 3 |202| PH0 | Initial geopotential | 1 | 0 | 0 | 3 |203| MU_1 | Restart Parameter | 3 | 0 | 0 | 3 |204| MU_2 | Restart Parameter | 3 | 0 | 0 | 3 |205| AL | Inverse perturbation density [m3 kg-1] | 5 | 0 | 0 | 3 |206| ALT | Inverse density [m3 kg-1] | 4 | 0 | 0 | 3 |207| XF_ENS | Mass flux PDF in GRELL | 4 | 0 | 0 | 4 | 0 | GSW | Net short wave flux [W/m^2] | 3 | 0 | 0 | 4 |192| SWDOWN | Downward short wave flux [W/m^2] | 1 | 0 | 0 | 4 |193| TOTSWDN | Radiation State Variable | 2 | 0 | 0 | 4 |194| RSWTOA | Radiation State Variable | 4 | 0 | 0 | 4 |195| RLWTOA | Radiation State Variable | 4 | 0 | 0 | 4 |196| CZMEAN | Radiation State Variable | 4 | 0 | 0 | 4 |197| CFRACL | Radiation State Variable | 4 | 0 | 0 | 4 |198| CFRACM | Radiation State Variable | 4 | 0 | 0 | 4 |199| CFRACH | Radiation State Variable | 4 | 0 | 0 | 4 |200| ACFRST | Radiation State Variable | 4 | 0 | 0 | 4 |201| NCFRST | Radiation State Variable | 4 | 0 | 0 | 4 |202| ACFRCV | Radiation State Variable | 4 | 0 | 0 | 4 |203| NCFRCV | Radiation State Variable | 4 | 0 | 0 | 5 | 0 | GLW | Net long wave flux [W/m^2] | 2 | 0 | 0 | 5 |193| TOTLWDN | Radiation State Variable | 4 | 0 | 0 | 5 |194| OLR | TOA Outgoing Long Wave [W/m^2] | 1 | 0 | 0 | 6 | 1 | CLDFRA | Total Cloud Cover [%] | 2 | 0 | 0 | 6 |192| TAUCLDI | Cloud optical thickness for ice | 2 | 0 | 0 | 6 |193| TAUCLDC | Cloud optical thickness for water | 2 | 0 | 0 | 13|192|MASS_AER_WATER| aerosol liquid water content | 6 | 0 | 0 | 13|193|MASS_AER_DRY| dry aerosol mass | 6 | 0 | 0 | 19| 1| ALBEDO | Albedo [%] | 2 | 0 | 0 | 19| 11|TKE,TKE_MYJ| Turbulent Kinetic Energy [J/kg] | 3 | 0 | 0 | 19|192| ALBBCK | Background Albedo [%] | 4 | 0 | 0 | 19|193| TKE_1 | Restart Parameter | 3 | 0 | 0 | 19|194| TKE_2 | Restart Parameter | 3 | 0 | 0 |191|192| CFN | CFN from WRF [?] | 3 | 0 | 0 |191|193| CFN1 | CFN1 from WRF [?] | 3 | 0 | 0 |191|194| ZNU | Eta values on half (mass) levels | 6 | 0 | 0 |191|195| ZNW | Eta values on full (w) levels | 6 | 0 | 0 |191|196| DN | DN values [dimensionless] | 4 | 0 | 0 |191|197| DNW | DNW values [dimensionless] | 4 | 0 | 0 |191|198| RDN | Inverse DN values [dimensionless] | 3 | 0 | 0 |191|199| RDNW | Inverse d(eta) values for full (w) levels| 3 | 0 | 0 |191|200| FNP | Lower weight for vertical strection [dim]| 5 | 0 | 0 |191|201| FNM | Upper weight for vertical strection [dim]| 5 | 0 | 0 |191|202| MAPFAC_M | Map Scale Factor [dimensionless] | 4 | 0 | 0 |191|203| MAPFAC_U | Map Scale Factor [dimensionless] | 4 | 0 | 0 |191|204| MAPFAC_V | Map Scale Factor [dimensionless] | 4 | 0 | 0 |191|205| F | Coriolis sine latitude term | 6 | 0 | 0 |191|206| E | Coriolis cosine latitude term | 6 | 0 | 0 |191|207| PBLH | Planetary boundary layer height [m] | 0 | 0 | 0 |191|208| ZS | Depths of centers of soil layers [m] | 3 | 0 | 0 |191|209| DZS | Thicknesses of soil layers [m] | 3 | 0 | 0 |191|210| XLAT,XLAT_U,XLAT_V| Latitude [deg] | 4 | 0 | 0 |191|211| XLONG,XLONG_U,XLONG_V| Longitude [deg] | 4 | 0 | 0 |191|212| COSALPHA | Local cosine of map rotation | 6 | 0 | 0 |191|213| SINALPHA | Local sine of map rotation | 6 | 0 | 0 |191|214| NEST_POS | Nest Position | 0 | 0 | 0 |191|215| ALB | Restart Parameter (??) | 4 | 0 | 0 |191|216| EXCH_H | Exchange coefficients | 3 | 0 | 0 |191|217| KPBL | Level of PBL top [m] | 1 | 0 | 0 |191|218| HTOP | Top of convection level | 1 | 0 | 0 |191|219| HBOT | Bottom of convection level | 1 | 0 | 0 |191|220| TKESFCF | TKE at the surface [m^/s^2] | 3 | 0 | 0 |191|221| MAPFAC_MX | Map Scale Factor [dimensionless] | 4 | 0 | 0 |191|222| MAPFAC_UX | Map Scale Factor [dimensionless] | 4 | 0 | 0 |191|223| MAPFAC_VX | Map Scale Factor [dimensionless] | 4 | 0 | 0 |191|224| MAPFAC_MY | Map Scale Factor [dimensionless] | 4 | 0 | 0 |191|225| MAPFAC_UY | Map Scale Factor [dimensionless] | 4 | 0 | 0 |191|226| MAPFAC_VY | Map Scale Factor [dimensionless] | 4 | 0 | 0 |191|227| MF_VX_INV | Inverse Map Scale Factor | 4 | 0 | 0 |191|228|HT_SHAD_BXS| Bdy Height of Orographic Shadow | 2 | 0 | 0 |191|229|HT_SHAD_BXE| Bdy Height of Orographic Shadow | 2 | 0 | 0 |191|230|HT_SHAD_BYS| Bdy Height of Orographic Shadow | 2 | 0 | 0 |191|231|HT_SHAD_BYE| Bdy Height of Orographic Shadow | 2 | 0 | 0 |191|232|HT_SHAD_BTXS|Bdy Height of Orographic Shadow | 2 | 0 | 0 |191|233|HT_SHAD_BTXE|Bdy Height of Orographic Shadow | 2 | 0 | 0 |191|234|HT_SHAD_BTYS|Bdy Height of Orographic Shadow | 2 | 0 | 0 |191|235|HT_SHAD_BTYE|Bdy Height of Orographic Shadow | 2 | 0 | 0 |191|236| HGT_SHAD | Height of Orographic Shadow | 2 | 0 | 0 |191|237| EDT_OUT | EDT from GD scheme | 5 | 0 | 0 |191|253|WRF_SCALAR | Scalar Output data in local section | 0 | 0 | 0 |191|254|WRF_GLOBAL | Global Output data in local section | 0 | 0 | 0 |192| 1 | U_BXS | | 0 | 0 | 0 |192| 2 | U_BXE | | 0 | 0 | 0 |192| 3 | U_BYS | | 0 | 0 | 0 |192| 4 | U_BYE | | 0 | 0 | 0 |192| 5 | U_BTXS | | 2 | 0 | 0 |192| 6 | U_BTXE | | 2 | 0 | 0 |192| 7 | U_BTYS | | 2 | 0 | 0 |192| 8 | U_BTYE | | 2 | 0 | 0 |192| 9 | V_BXS | | 0 | 0 | 0 |192| 10| V_BXE | | 0 | 0 | 0 |192| 11| V_BYS | | 0 | 0 | 0 |192| 12| V_BYE | | 0 | 0 | 0 |192| 13| V_BTXS | | 2 | 0 | 0 |192| 14| V_BTXE | | 2 | 0 | 0 |192| 15| V_BTYS | | 2 | 0 | 0 |192| 16| V_BTYE | | 2 | 0 | 0 |192| 17| W_BXS | | 4 | 0 | 0 |192| 18| W_BXE | | 4 | 0 | 0 |192| 19| W_BYS | | 4 | 0 | 0 |192| 20| W_BYE | | 4 | 0 | 0 |192| 21| W_BTXS | | 5 | 0 | 0 |192| 22| W_BTXE | | 5 | 0 | 0 |192| 23| W_BTYS | | 5 | 0 | 0 |192| 24| W_BTYE | | 5 | 0 | 0 |192| 25| PH_BXS | | -2 | 0 | 0 |192| 26| PH_BXE | | -2 | 0 | 0 |192| 27| PH_BYS | | -2 | 0 | 0 |192| 28| PH_BYE | | -2 | 0 | 0 |192| 29| PH_BTXS | | 0 | 0 | 0 |192| 30| PH_BTXE | | 0 | 0 | 0 |192| 31| PH_BTYS | | 0 | 0 | 0 |192| 32| PH_BTYE | | 0 | 0 | 0 |192| 33| T_BXS | | -1 | 0 | 0 |192| 34| T_BXE | | -1 | 0 | 0 |192| 35| T_BYS | | -1 | 0 | 0 |192| 36| T_BYE | | -1 | 0 | 0 |192| 37| T_BTXS | | 2 | 0 | 0 |192| 38| T_BTXE | | 2 | 0 | 0 |192| 39| T_BTYS | | 2 | 0 | 0 |192| 40| T_BTYE | | 2 | 0 | 0 |192| 41| MU_BXS | | 2 | 0 | 0 |192| 42| MU_BXE | | 2 | 0 | 0 |192| 43| MU_BYS | | 2 | 0 | 0 |192| 44| MU_BYE | | 4 | 0 | 0 |192| 45| MU_BTXS | | 4 | 0 | 0 |192| 46| MU_BTXE | | 4 | 0 | 0 |192| 47| MU_BTYS | | 4 | 0 | 0 |192| 48| MU_BTYE | | 4 | 0 | 0 |192| 49| QVAPOR_BXS| | 1 | 0 | 0 |192| 50| QVAPOR_BXE| | 1 | 0 | 0 |192| 51| QVAPOR_BYS| | 1 | 0 | 0 |192| 52| QVAPOR_BYE| | 1 | 0 | 0 |192| 53|QVAPOR_BTXS| | 6 | 0 | 0 |192| 54|QVAPOR_BTXE| | 6 | 0 | 0 |192| 55|QVAPOR_BTYS| | 6 | 0 | 0 |192| 56|QVAPOR_BTYE| | 6 | 0 | 0 |192| 57| QCLOUD_BXS| | 1 | 0 | 0 |192| 58| QCLOUD_BXE| | 1 | 0 | 0 |192| 59| QCLOUD_BYS| | 1 | 0 | 0 |192| 60| QCLOUD_BYE| | 1 | 0 | 0 |192| 61|QCLOUD_BTXS| | 7 | 0 | 0 |192| 62|QCLOUD_BTXE| | 7 | 0 | 0 |192| 63|QCLOUD_BTYS| | 7 | 0 | 0 |192| 64|QCLOUD_BTYE| | 7 | 0 | 0 |192| 65| QRAIN_BXS | | 1 | 0 | 0 |192| 66| QRAIN_BXE | | 1 | 0 | 0 |192| 67| QRAIN_BYS | | 1 | 0 | 0 |192| 68| QRAIN_BYE | | 1 | 0 | 0 |192| 69| QRAIN_BTXS| | 7 | 0 | 0 |192| 70| QRAIN_BTXE| | 7 | 0 | 0 |192| 71| QRAIN_BTYS| | 7 | 0 | 0 |192| 72| QRAIN_BTYE| | 7 | 0 | 0 |192| 73| QICE_BXS | | 2 | 0 | 0 |192| 74| QICE_BXE | | 2 | 0 | 0 |192| 75| QICE_BYS | | 2 | 0 | 0 |192| 76| QICE_BYE | | 2 | 0 | 0 |192| 77| QICE_BTXS | | 7 | 0 | 0 |192| 78| QICE_BTXE | | 7 | 0 | 0 |192| 79| QICE_BTYS | | 7 | 0 | 0 |192| 80| QICE_BTYE | | 7 | 0 | 0 |192| 81| QSNOW_BXS | | 2 | 0 | 0 |192| 82| QSNOW_BXE | | 2 | 0 | 0 |192| 83| QSNOW_BYS | | 2 | 0 | 0 |192| 84| QSNOW_BYE | | 2 | 0 | 0 |192| 85| QSNOW_BTXS| | 7 | 0 | 0 |192| 86| QSNOW_BTXE| | 7 | 0 | 0 |192| 87| QSNOW_BTYS| | 7 | 0 | 0 |192| 88| QSNOW_BTYE| | 7 | 0 | 0 |192| 89| QGRAUP_BXS| | 2 | 0 | 0 |192| 90| QGRAUP_BXE| | 2 | 0 | 0 |192| 91| QGRAUP_BYS| | 2 | 0 | 0 |192| 92| QGRAUP_BYE| | 2 | 0 | 0 |192| 93|QGRAUP_BTXS| | 7 | 0 | 0 |192| 94|QGRAUP_BTXE| | 7 | 0 | 0 |192| 95|QGRAUP_BTYS| | 7 | 0 | 0 |192| 96|QGRAUP_BTYE| | 7 | 0 | 0 |192| 97| QNICE_BXS | | 4 | 0 | 0 |192| 98| QNICE_BXE | | 4 | 0 | 0 |192| 99| QNICE_BYS | | 4 | 0 | 0 |192|100| QNICE_BYE | | 4 | 0 | 0 |192|101| QNICE_BTXS| | 7 | 0 | 0 |192|102| QNICE_BTXE| | 7 | 0 | 0 |192|103| QNICE_BTYS| | 7 | 0 | 0 |192|104| QNICE_BTYE| | 7 | 0 | 0 |192|105| TSHLTR | Shelter theta from MYJ [K] | 2 | 0 | 0 |192|106| QSHLTR | Shelter specific humidity from MYJ[kg/kg]| 6 | 0 | 0 |192|107| PSHLTR | Shelter pressure from MYJ [Pa] | 0 | 0 | 0 |192|108| TH10 | 10-M Theta from MYJ [K] | 2 | 0 | 0 |192|109| Q10 | 10-M Specific humidity from MYJ [kg/kg] | 6 | 0 | 0 |192|110| CLAT | Computational Grid Latitude | 5 | 0 | 0 |192|111| CLON | Computational Grid Longitude | 5 | 0 | 0 |193|192| FCX | Relaxation term for boundary zone | 4 | 0 | 0 |193|193| GCX | 2nd Relaxation term for boundary zone | 4 | 0 | 0 |193|194|MP_RESTART_STATE|state vect for microphysics restarts | 4 | 0 | 0 |193|195|TBPVS_STATE| state for etampnew microphysics | 4 | 0 | 0 |193|196|TBPVS0_STATE| state for etampnew microphysics | 4 | 0 | 1 | 0 | 1 | SFROFF | Storm surface runoff [kg/m^2] | 4 | 0 | 1 | 0 |192| SOILT1 | Temperature inside snow | 2 | 0 | 1 | 0 |193| TSNAV | Average snow temperature | 2 | 0 | 1 | 0 |194| UDROFF | Baseflow-groundwater runoff [kg/m^2] | 4 | 0 | 2 | 0 | 0 | LANDMASK | Land Cover (1=land,2=sea) | 1 | 0 | 2 | 0 | 1 | ZNT | Time Varying Roughness length [m] | 6 | 0 | 2 | 0 | 4 | VEGFRA | Vegetation [%] | 1 | 0 | 2 | 0 | 7 |HGT,SOILHGT,DIST| Terrain Height [m] | 2 | 0 | 2 | 0 |192| LU_INDEX | Land Use Index [Cat] | 1 | 0 | 2 | 0 |193| CANWAT | Plant Canopy Surface Water [kg/m^2] | 4 | 0 | 2 | 0 |194| SNOWC | Snow cover [%] | 1 | 0 | 2 | 0 |195| XLAND | Land cover (land=1; sea=0) [fraction] | 1 | 0 | 2 | 0 |196| TOPOSTDV | Standard Deviation of topography | 3 | 0 | 2 | 0 |197| TOPOSLPX | Sub-gridscale mean topographic slope | 6 | 0 | 2 | 0 |198| TOPOSLPY | Sub-gridscale mean topographic slope | 6 | 0 | 2 | 0 |199| SLOPECAT | Topographical Categorical Slope | 1 | 0 | 2 | 0 |200| LANDUSEF | Land use categorical fraction on mass gr | 3 | 0 | 2 | 0 |201| SOILCTOP | Top layer soil type as a categ. fraction | 3 | 0 | 2 | 0 |202| SOILCBOT | Bot layer soil type as a categ. fraction | 3 | 0 | 2 | 0 |203| RMOL | 1./Monin Ob. Length [dimensionless] | 2 | 0 | 2 | 0 |204| SHDMAX | Annual MAX veg fraction | 3 | 0 | 2 | 0 |205| SHDMIN | Annual MIN veg fraction | 3 | 0 | 2 | 0 |206| Z0 | Background Roughness length [m] | 6 | 0 | 2 | 0 |207| EMISS | Surface Emissivity | 4 | 0 | 2 | 3 | 0 | ISLTYP | Soil Type | 1 | 0 | 2 | 3 | 1 |TSLB,ST000010,ST010040,ST040100,ST100200|Soil Temperature|1| 0 | 2 | 3 | 2 | SMSTOT | Soil Moisture content [kg/m^2] | 3 | 0 | 2 | 3 | 4 | SOILTB | Bottom soil temperature [K] | 2 | 0 | 2 | 3 |192| TMN | Ground Reservoir Temperature | 1 | 0 | 2 | 3 |192| SOILW | Volumetric soil moisture [fraction] | 4 | 0 | 2 | 3 |193| SOILL | Liquid volumetric soil moisture[fraction]| 4 | 0 | 2 | 3 |194| SMSTAV | Moisture availability [%] | 4 | 0 | 2 | 3 |195| IVGTYP | Vegetation type | 1 | 0 | 2 | 3 |196| SOILCAT | Soil Category | 1 | 0 | 2 | 3 |197| VEGCAT | Vegetation Category | 1 | 0 | 2 | 3 |198| SH2O | Soil liquid water [m^3/m^3] | 3 | 0 | 2 | 3 |199| SMOIS | Soil moisture [m^3/m^3] | 3 | 0 | 2 | 3 |200| SNOALB | Annual MAX snow albedor in fraction | 4 | 0 | 2 | 3 |201| SMFR3D | Soil Ice | 2 | 0 | 2 | 3 |202|KEEPFR3DFLAG| Flag - 1. Forzen Soil Yes, 0 - NO | 1 | 0 | 2 | 3 |203| CAPG | Heat capacity for soil [j /(K m^3)] | 0 | 0 | 10 | 2 | 0 |XICE,SEAICE| Ice Concentration [fraction] | 1 | 0 | 10 | 3 | 0 | SST | Temperature | 2 | 0 | 10 | 3 |192|XICEM | Sea Ice Flag - previous step | 0 | 0 | # # Ind | center | subcenter | Master Tbl Version | Local Tbl Version | #-----+--------+-----------+--------------------+-------------------+ -1 | 252 | 255 | 1 | 1 | # # Another table could go here. #