!+---+-----------------------------------------------------------------+ !.. This subroutine computes the moisture tendencies of water vapor, !.. cloud droplets, rain, cloud ice (pristine), snow, and graupel. !.. Prior to WRFv2.2 this code was based on Reisner et al (1998), but !.. few of those pieces remain. A complete description is now found in !.. Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: !.. Explicit Forecasts of winter precipitation using an improved bulk !.. microphysics scheme. Part II: Implementation of a new snow !.. parameterization. Mon. Wea. Rev., 136, 5095-5115. !.. Prior to WRFv3.1, this code was single-moment rain prediction as !.. described in the reference above, but in v3.1 and higher, the !.. scheme is two-moment rain (predicted rain number concentration). !.. !.. Beginning with WRFv3.6, this is also the "aerosol-aware" scheme as !.. described in Thompson, G. and T. Eidhammer, 2014: A study of !.. aerosol impacts on clouds and precipitation development in a large !.. winter cyclone. J. Atmos. Sci., 71, 3636-3658. Setting WRF !.. namelist option mp_physics=8 utilizes the older one-moment cloud !.. water with constant droplet concentration set as Nt_c (found below) !.. while mp_physics=28 uses double-moment cloud droplet number !.. concentration, which is not permitted to exceed Nt_c_max below. !.. !.. Most importantly, users may wish to modify the prescribed number of !.. cloud droplets (Nt_c; see guidelines mentioned below). Otherwise, !.. users may alter the rain and graupel size distribution parameters !.. to use exponential (Marshal-Palmer) or generalized gamma shape. !.. The snow field assumes a combination of two gamma functions (from !.. Field et al. 2005) and would require significant modifications !.. throughout the entire code to alter its shape as well as accretion !.. rates. Users may also alter the constants used for density of rain, !.. graupel, ice, and snow, but the latter is not constant when using !.. Paul Field's snow distribution and moments methods. Other values !.. users can modify include the constants for mass and/or velocity !.. power law relations and assumed capacitances used in deposition/ !.. sublimation/evaporation/melting. !.. Remaining values should probably be left alone. !.. !..Author: Greg Thompson, NCAR-RAL, gthompsn@ucar.edu, 303-497-2805 !..Last modified: 11 Feb 2015 Aerosol additions to v3.5.1 code 9/2013 !..Additions by Alison D. Nugent labeled by ADN and the date the change !..was made. Microphysical conversion rates output for budgets. !+---+-----------------------------------------------------------------+ !wrft:model_layer:physics !+---+-----------------------------------------------------------------+ ! MODULE module_mp_thompson USE module_wrf_error USE module_mp_radar #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) USE module_dm, ONLY : wrf_dm_max_real #endif IMPLICIT NONE LOGICAL, PARAMETER, PRIVATE:: iiwarm = .true. ! ADN 2.11.15 changed to true LOGICAL, PRIVATE:: is_aerosol_aware = .false. LOGICAL, PARAMETER, PRIVATE:: dustyIce = .true. LOGICAL, PARAMETER, PRIVATE:: homogIce = .true. INTEGER, PARAMETER, PRIVATE:: IFDRY = 0 REAL, PARAMETER, PRIVATE:: T_0 = 273.15 REAL, PARAMETER, PRIVATE:: PI = 3.1415926536 !..Densities of rain, snow, graupel, and cloud ice. REAL, PARAMETER, PRIVATE:: rho_w = 1000.0 REAL, PARAMETER, PRIVATE:: rho_s = 100.0 REAL, PARAMETER, PRIVATE:: rho_g = 500.0 REAL, PARAMETER, PRIVATE:: rho_i = 890.0 !..Prescribed number of cloud droplets. Set according to known data or !.. roughly 100 per cc (100.E6 m^-3) for Maritime cases and !.. 300 per cc (300.E6 m^-3) for Continental. Gamma shape parameter, !.. mu_c, calculated based on Nt_c is important in autoconversion !.. scheme. In 2-moment cloud water, Nt_c represents a maximum of !.. droplet concentration and nu_c is also variable depending on local !.. droplet number concentration. REAL, PARAMETER, PRIVATE:: Nt_c = 100.E6 REAL, PARAMETER, PRIVATE:: Nt_c_max = 1999.E6 !..Declaration of constants for assumed CCN/IN aerosols when none in !.. the input data. Look inside the init routine for modifications !.. due to surface land-sea points or vegetation characteristics. REAL, PARAMETER, PRIVATE:: naIN0 = 1.5E6 REAL, PARAMETER, PRIVATE:: naIN1 = 0.5E6 REAL, PARAMETER, PRIVATE:: naCCN0 = 300.0E6 ! ADN set value REAL, PARAMETER, PRIVATE:: naCCN1 = 50.0E6 ! ADN set value !..Generalized gamma distributions for rain, graupel and cloud ice. !.. N(D) = N_0 * D**mu * exp(-lamda*D); mu=0 is exponential. REAL, PARAMETER, PRIVATE:: mu_r = 0.0 REAL, PARAMETER, PRIVATE:: mu_g = 0.0 REAL, PARAMETER, PRIVATE:: mu_i = 0.0 REAL, PRIVATE:: mu_c !-GT INTEGER, PRIVATE:: nu_c !..Sum of two gamma distrib for snow (Field et al. 2005). !.. N(D) = M2**4/M3**3 * [Kap0*exp(-M2*Lam0*D/M3) !.. + Kap1*(M2/M3)**mu_s * D**mu_s * exp(-M2*Lam1*D/M3)] !.. M2 and M3 are the (bm_s)th and (bm_s+1)th moments respectively !.. calculated as function of ice water content and temperature. REAL, PARAMETER, PRIVATE:: mu_s = 0.6357 REAL, PARAMETER, PRIVATE:: Kap0 = 490.6 REAL, PARAMETER, PRIVATE:: Kap1 = 17.46 REAL, PARAMETER, PRIVATE:: Lam0 = 20.78 REAL, PARAMETER, PRIVATE:: Lam1 = 3.29 !..Y-intercept parameter for graupel is not constant and depends on !.. mixing ratio. Also, when mu_g is non-zero, these become equiv !.. y-intercept for an exponential distrib and proper values are !.. computed based on same mixing ratio and total number concentration. REAL, PARAMETER, PRIVATE:: gonv_min = 1.E4 REAL, PARAMETER, PRIVATE:: gonv_max = 3.E6 !..Mass power law relations: mass = am*D**bm !.. Snow from Field et al. (2005), others assume spherical form. REAL, PARAMETER, PRIVATE:: am_r = PI*rho_w/6.0 REAL, PARAMETER, PRIVATE:: bm_r = 3.0 REAL, PARAMETER, PRIVATE:: am_s = 0.069 REAL, PARAMETER, PRIVATE:: bm_s = 2.0 REAL, PARAMETER, PRIVATE:: am_g = PI*rho_g/6.0 REAL, PARAMETER, PRIVATE:: bm_g = 3.0 REAL, PARAMETER, PRIVATE:: am_i = PI*rho_i/6.0 REAL, PARAMETER, PRIVATE:: bm_i = 3.0 !..Fallspeed power laws relations: v = (av*D**bv)*exp(-fv*D) !.. Rain from Ferrier (1994), ice, snow, and graupel from !.. Thompson et al (2008). Coefficient fv is zero for graupel/ice. REAL, PARAMETER, PRIVATE:: av_r = 4854.0 REAL, PARAMETER, PRIVATE:: bv_r = 1.0 REAL, PARAMETER, PRIVATE:: fv_r = 195.0 REAL, PARAMETER, PRIVATE:: av_s = 40.0 REAL, PARAMETER, PRIVATE:: bv_s = 0.55 REAL, PARAMETER, PRIVATE:: fv_s = 100.0 REAL, PARAMETER, PRIVATE:: av_g = 442.0 REAL, PARAMETER, PRIVATE:: bv_g = 0.89 REAL, PARAMETER, PRIVATE:: av_i = 1847.5 REAL, PARAMETER, PRIVATE:: bv_i = 1.0 REAL, PARAMETER, PRIVATE:: av_c = 0.316946E8 REAL, PARAMETER, PRIVATE:: bv_c = 2.0 !..Capacitance of sphere and plates/aggregates: D**3, D**2 REAL, PARAMETER, PRIVATE:: C_cube = 0.5 REAL, PARAMETER, PRIVATE:: C_sqrd = 0.3 !..Collection efficiencies. Rain/snow/graupel collection of cloud !.. droplets use variables (Ef_rw, Ef_sw, Ef_gw respectively) and !.. get computed elsewhere because they are dependent on stokes !.. number. REAL, PARAMETER, PRIVATE:: Ef_si = 0.05 REAL, PARAMETER, PRIVATE:: Ef_rs = 0.95 REAL, PARAMETER, PRIVATE:: Ef_rg = 0.75 REAL, PARAMETER, PRIVATE:: Ef_ri = 0.95 !..Minimum microphys values !.. R1 value, 1.E-12, cannot be set lower because of numerical !.. problems with Paul Field's moments and should not be set larger !.. because of truncation problems in snow/ice growth. REAL, PARAMETER, PRIVATE:: R1 = 1.E-12 REAL, PARAMETER, PRIVATE:: R2 = 1.E-6 REAL, PARAMETER, PRIVATE:: eps = 1.E-15 !..Constants in Cooper curve relation for cloud ice number. REAL, PARAMETER, PRIVATE:: TNO = 5.0 REAL, PARAMETER, PRIVATE:: ATO = 0.304 !..Rho_not used in fallspeed relations (rho_not/rho)**.5 adjustment. REAL, PARAMETER, PRIVATE:: rho_not = 101325.0/(287.05*298.0) !..Schmidt number REAL, PARAMETER, PRIVATE:: Sc = 0.632 REAL, PRIVATE:: Sc3 !..Homogeneous freezing temperature REAL, PARAMETER, PRIVATE:: HGFR = 235.16 !..Water vapor and air gas constants at constant pressure REAL, PARAMETER, PRIVATE:: Rv = 461.5 REAL, PARAMETER, PRIVATE:: oRv = 1./Rv REAL, PARAMETER, PRIVATE:: R = 287.04 REAL, PARAMETER, PRIVATE:: Cp = 1004.0 REAL, PARAMETER, PRIVATE:: R_uni = 8.314 ! J (mol K)-1 DOUBLE PRECISION, PARAMETER, PRIVATE:: k_b = 1.38065E-23 ! Boltzmann constant [J/K] DOUBLE PRECISION, PARAMETER, PRIVATE:: M_w = 18.01528E-3 ! molecular mass of water [kg/mol] DOUBLE PRECISION, PARAMETER, PRIVATE:: M_a = 28.96E-3 ! molecular mass of air [kg/mol] DOUBLE PRECISION, PARAMETER, PRIVATE:: N_avo = 6.022E23 ! Avogadro number [1/mol] DOUBLE PRECISION, PARAMETER, PRIVATE:: ma_w = M_w / N_avo ! mass of water molecule [kg] REAL, PARAMETER, PRIVATE:: ar_volume = 4./3.*PI*(2.5e-6)**3 ! assume radius of 0.025 micrometer, 2.5e-6 cm !..Enthalpy of sublimation, vaporization, and fusion at 0C. REAL, PARAMETER, PRIVATE:: lsub = 2.834E6 REAL, PARAMETER, PRIVATE:: lvap0 = 2.5E6 REAL, PARAMETER, PRIVATE:: lfus = lsub - lvap0 REAL, PARAMETER, PRIVATE:: olfus = 1./lfus !..Ice initiates with this mass (kg), corresponding diameter calc. !..Min diameters and mass of cloud, rain, snow, and graupel (m, kg). REAL, PARAMETER, PRIVATE:: xm0i = 1.E-12 REAL, PARAMETER, PRIVATE:: D0c = 1.E-6 REAL, PARAMETER, PRIVATE:: D0r = 50.E-6 REAL, PARAMETER, PRIVATE:: D0s = 200.E-6 REAL, PARAMETER, PRIVATE:: D0g = 250.E-6 REAL, PRIVATE:: D0i, xm0s, xm0g !..Lookup table dimensions INTEGER, PARAMETER, PRIVATE:: nbins = 100 INTEGER, PARAMETER, PRIVATE:: nbc = nbins INTEGER, PARAMETER, PRIVATE:: nbi = nbins INTEGER, PARAMETER, PRIVATE:: nbr = nbins INTEGER, PARAMETER, PRIVATE:: nbs = nbins INTEGER, PARAMETER, PRIVATE:: nbg = nbins INTEGER, PARAMETER, PRIVATE:: ntb_c = 37 INTEGER, PARAMETER, PRIVATE:: ntb_i = 64 INTEGER, PARAMETER, PRIVATE:: ntb_r = 37 INTEGER, PARAMETER, PRIVATE:: ntb_s = 28 INTEGER, PARAMETER, PRIVATE:: ntb_g = 28 INTEGER, PARAMETER, PRIVATE:: ntb_g1 = 28 INTEGER, PARAMETER, PRIVATE:: ntb_r1 = 37 INTEGER, PARAMETER, PRIVATE:: ntb_i1 = 55 INTEGER, PARAMETER, PRIVATE:: ntb_t = 9 INTEGER, PRIVATE:: nic1, nic2, nii2, nii3, nir2, nir3, nis2, nig2, nig3 INTEGER, PARAMETER, PRIVATE:: ntb_arc = 7 INTEGER, PARAMETER, PRIVATE:: ntb_arw = 9 INTEGER, PARAMETER, PRIVATE:: ntb_art = 7 INTEGER, PARAMETER, PRIVATE:: ntb_arr = 5 INTEGER, PARAMETER, PRIVATE:: ntb_ark = 4 INTEGER, PARAMETER, PRIVATE:: ntb_IN = 55 INTEGER, PRIVATE:: niIN2 DOUBLE PRECISION, DIMENSION(nbins+1):: xDx DOUBLE PRECISION, DIMENSION(nbc):: Dc, dtc DOUBLE PRECISION, DIMENSION(nbi):: Di, dti DOUBLE PRECISION, DIMENSION(nbr):: Dr, dtr DOUBLE PRECISION, DIMENSION(nbs):: Ds, dts DOUBLE PRECISION, DIMENSION(nbg):: Dg, dtg DOUBLE PRECISION, DIMENSION(nbc):: t_Nc !..Lookup tables for cloud water content (kg/m**3). REAL, DIMENSION(ntb_c), PARAMETER, PRIVATE:: & r_c = (/1.e-6,2.e-6,3.e-6,4.e-6,5.e-6,6.e-6,7.e-6,8.e-6,9.e-6, & 1.e-5,2.e-5,3.e-5,4.e-5,5.e-5,6.e-5,7.e-5,8.e-5,9.e-5, & 1.e-4,2.e-4,3.e-4,4.e-4,5.e-4,6.e-4,7.e-4,8.e-4,9.e-4, & 1.e-3,2.e-3,3.e-3,4.e-3,5.e-3,6.e-3,7.e-3,8.e-3,9.e-3, & 1.e-2/) !..Lookup tables for cloud ice content (kg/m**3). REAL, DIMENSION(ntb_i), PARAMETER, PRIVATE:: & r_i = (/1.e-10,2.e-10,3.e-10,4.e-10, & 5.e-10,6.e-10,7.e-10,8.e-10,9.e-10, & 1.e-9,2.e-9,3.e-9,4.e-9,5.e-9,6.e-9,7.e-9,8.e-9,9.e-9, & 1.e-8,2.e-8,3.e-8,4.e-8,5.e-8,6.e-8,7.e-8,8.e-8,9.e-8, & 1.e-7,2.e-7,3.e-7,4.e-7,5.e-7,6.e-7,7.e-7,8.e-7,9.e-7, & 1.e-6,2.e-6,3.e-6,4.e-6,5.e-6,6.e-6,7.e-6,8.e-6,9.e-6, & 1.e-5,2.e-5,3.e-5,4.e-5,5.e-5,6.e-5,7.e-5,8.e-5,9.e-5, & 1.e-4,2.e-4,3.e-4,4.e-4,5.e-4,6.e-4,7.e-4,8.e-4,9.e-4, & 1.e-3/) !..Lookup tables for rain content (kg/m**3). REAL, DIMENSION(ntb_r), PARAMETER, PRIVATE:: & r_r = (/1.e-6,2.e-6,3.e-6,4.e-6,5.e-6,6.e-6,7.e-6,8.e-6,9.e-6, & 1.e-5,2.e-5,3.e-5,4.e-5,5.e-5,6.e-5,7.e-5,8.e-5,9.e-5, & 1.e-4,2.e-4,3.e-4,4.e-4,5.e-4,6.e-4,7.e-4,8.e-4,9.e-4, & 1.e-3,2.e-3,3.e-3,4.e-3,5.e-3,6.e-3,7.e-3,8.e-3,9.e-3, & 1.e-2/) !..Lookup tables for graupel content (kg/m**3). REAL, DIMENSION(ntb_g), PARAMETER, PRIVATE:: & r_g = (/1.e-5,2.e-5,3.e-5,4.e-5,5.e-5,6.e-5,7.e-5,8.e-5,9.e-5, & 1.e-4,2.e-4,3.e-4,4.e-4,5.e-4,6.e-4,7.e-4,8.e-4,9.e-4, & 1.e-3,2.e-3,3.e-3,4.e-3,5.e-3,6.e-3,7.e-3,8.e-3,9.e-3, & 1.e-2/) !..Lookup tables for snow content (kg/m**3). REAL, DIMENSION(ntb_s), PARAMETER, PRIVATE:: & r_s = (/1.e-5,2.e-5,3.e-5,4.e-5,5.e-5,6.e-5,7.e-5,8.e-5,9.e-5, & 1.e-4,2.e-4,3.e-4,4.e-4,5.e-4,6.e-4,7.e-4,8.e-4,9.e-4, & 1.e-3,2.e-3,3.e-3,4.e-3,5.e-3,6.e-3,7.e-3,8.e-3,9.e-3, & 1.e-2/) !..Lookup tables for rain y-intercept parameter (/m**4). REAL, DIMENSION(ntb_r1), PARAMETER, PRIVATE:: & N0r_exp = (/1.e6,2.e6,3.e6,4.e6,5.e6,6.e6,7.e6,8.e6,9.e6, & 1.e7,2.e7,3.e7,4.e7,5.e7,6.e7,7.e7,8.e7,9.e7, & 1.e8,2.e8,3.e8,4.e8,5.e8,6.e8,7.e8,8.e8,9.e8, & 1.e9,2.e9,3.e9,4.e9,5.e9,6.e9,7.e9,8.e9,9.e9, & 1.e10/) !..Lookup tables for graupel y-intercept parameter (/m**4). REAL, DIMENSION(ntb_g1), PARAMETER, PRIVATE:: & N0g_exp = (/1.e4,2.e4,3.e4,4.e4,5.e4,6.e4,7.e4,8.e4,9.e4, & 1.e5,2.e5,3.e5,4.e5,5.e5,6.e5,7.e5,8.e5,9.e5, & 1.e6,2.e6,3.e6,4.e6,5.e6,6.e6,7.e6,8.e6,9.e6, & 1.e7/) !..Lookup tables for ice number concentration (/m**3). REAL, DIMENSION(ntb_i1), PARAMETER, PRIVATE:: & Nt_i = (/1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0, & 1.e1,2.e1,3.e1,4.e1,5.e1,6.e1,7.e1,8.e1,9.e1, & 1.e2,2.e2,3.e2,4.e2,5.e2,6.e2,7.e2,8.e2,9.e2, & 1.e3,2.e3,3.e3,4.e3,5.e3,6.e3,7.e3,8.e3,9.e3, & 1.e4,2.e4,3.e4,4.e4,5.e4,6.e4,7.e4,8.e4,9.e4, & 1.e5,2.e5,3.e5,4.e5,5.e5,6.e5,7.e5,8.e5,9.e5, & 1.e6/) !..Aerosol table parameter: Number of available aerosols, vertical !.. velocity, temperature, aerosol mean radius, and hygroscopicity. REAL, DIMENSION(ntb_arc), PARAMETER, PRIVATE:: & ta_Na = (/10.0, 31.6, 100.0, 316.0, 1000.0, 3160.0, 10000.0/) REAL, DIMENSION(ntb_arw), PARAMETER, PRIVATE:: & ta_Ww = (/0.01, 0.0316, 0.1, 0.316, 1.0, 3.16, 10.0, 31.6, 100.0/) REAL, DIMENSION(ntb_art), PARAMETER, PRIVATE:: & ta_Tk = (/243.15, 253.15, 263.15, 273.15, 283.15, 293.15, 303.15/) REAL, DIMENSION(ntb_arr), PARAMETER, PRIVATE:: & ta_Ra = (/0.01, 0.02, 0.04, 0.08, 0.16/) REAL, DIMENSION(ntb_ark), PARAMETER, PRIVATE:: & ta_Ka = (/0.2, 0.4, 0.6, 0.8/) !..Lookup tables for IN concentration (/m**3) from 0.001 to 1000/Liter. REAL, DIMENSION(ntb_IN), PARAMETER, PRIVATE:: & Nt_IN = (/1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0, & 1.e1,2.e1,3.e1,4.e1,5.e1,6.e1,7.e1,8.e1,9.e1, & 1.e2,2.e2,3.e2,4.e2,5.e2,6.e2,7.e2,8.e2,9.e2, & 1.e3,2.e3,3.e3,4.e3,5.e3,6.e3,7.e3,8.e3,9.e3, & 1.e4,2.e4,3.e4,4.e4,5.e4,6.e4,7.e4,8.e4,9.e4, & 1.e5,2.e5,3.e5,4.e5,5.e5,6.e5,7.e5,8.e5,9.e5, & 1.e6/) !..For snow moments conversions (from Field et al. 2005) REAL, DIMENSION(10), PARAMETER, PRIVATE:: & sa = (/ 5.065339, -0.062659, -3.032362, 0.029469, -0.000285, & 0.31255, 0.000204, 0.003199, 0.0, -0.015952/) REAL, DIMENSION(10), PARAMETER, PRIVATE:: & sb = (/ 0.476221, -0.015896, 0.165977, 0.007468, -0.000141, & 0.060366, 0.000079, 0.000594, 0.0, -0.003577/) !..Temperatures (5 C interval 0 to -40) used in lookup tables. REAL, DIMENSION(ntb_t), PARAMETER, PRIVATE:: & Tc = (/-0.01, -5., -10., -15., -20., -25., -30., -35., -40./) !..Lookup tables for various accretion/collection terms. !.. ntb_x refers to the number of elements for rain, snow, graupel, !.. and temperature array indices. Variables beginning with t-p/c/m/n !.. represent lookup tables. Save compile-time memory by making !.. allocatable (2009Jun12, J. Michalakes). INTEGER, PARAMETER, PRIVATE:: R8SIZE = 8 INTEGER, PARAMETER, PRIVATE:: R4SIZE = 4 REAL (KIND=R8SIZE), ALLOCATABLE, DIMENSION(:,:,:,:):: & tcg_racg, tmr_racg, tcr_gacr, tmg_gacr, & tnr_racg, tnr_gacr REAL (KIND=R8SIZE), ALLOCATABLE, DIMENSION(:,:,:,:):: & tcs_racs1, tmr_racs1, tcs_racs2, tmr_racs2, & tcr_sacr1, tms_sacr1, tcr_sacr2, tms_sacr2, & tnr_racs1, tnr_racs2, tnr_sacr1, tnr_sacr2 REAL (KIND=R8SIZE), ALLOCATABLE, DIMENSION(:,:,:,:):: & tpi_qcfz, tni_qcfz REAL (KIND=R8SIZE), ALLOCATABLE, DIMENSION(:,:,:,:):: & tpi_qrfz, tpg_qrfz, tni_qrfz, tnr_qrfz REAL (KIND=R8SIZE), ALLOCATABLE, DIMENSION(:,:):: & tps_iaus, tni_iaus, tpi_ide REAL (KIND=R8SIZE), ALLOCATABLE, DIMENSION(:,:):: t_Efrw REAL (KIND=R8SIZE), ALLOCATABLE, DIMENSION(:,:):: t_Efsw REAL (KIND=R8SIZE), ALLOCATABLE, DIMENSION(:,:,:):: tnr_rev REAL (KIND=R8SIZE), ALLOCATABLE, DIMENSION(:,:,:):: & tpc_wev, tnc_wev REAL (KIND=R4SIZE), ALLOCATABLE, DIMENSION(:,:,:,:,:):: tnccn_act !..Variables holding a bunch of exponents and gamma values (cloud water, !.. cloud ice, rain, snow, then graupel). REAL, DIMENSION(5,15), PRIVATE:: cce, ccg REAL, DIMENSION(15), PRIVATE:: ocg1, ocg2 REAL, DIMENSION(7), PRIVATE:: cie, cig REAL, PRIVATE:: oig1, oig2, obmi REAL, DIMENSION(13), PRIVATE:: cre, crg REAL, PRIVATE:: ore1, org1, org2, org3, obmr REAL, DIMENSION(18), PRIVATE:: cse, csg REAL, PRIVATE:: oams, obms, ocms REAL, DIMENSION(12), PRIVATE:: cge, cgg REAL, PRIVATE:: oge1, ogg1, ogg2, ogg3, oamg, obmg, ocmg !..Declaration of precomputed constants in various rate eqns. REAL:: t1_qr_qc, t1_qr_qi, t2_qr_qi, t1_qg_qc, t1_qs_qc, t1_qs_qi REAL:: t1_qr_ev, t2_qr_ev REAL:: t1_qs_sd, t2_qs_sd, t1_qg_sd, t2_qg_sd REAL:: t1_qs_me, t2_qs_me, t1_qg_me, t2_qg_me !-GT CHARACTER*256:: mp_debug !+---+ !+---+-----------------------------------------------------------------+ !..END DECLARATIONS !+---+-----------------------------------------------------------------+ !+---+ !ctrlL ! PUBLIC :: cal_cldfra3 CONTAINS SUBROUTINE thompson_init(hgt, nwfa2d, nwfa, nifa, dx, dy, & is_start, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte) IMPLICIT NONE INTEGER, INTENT(IN):: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte REAL, DIMENSION(ims:ime,kms:kme,jms:jme), INTENT(IN):: hgt !..OPTIONAL variables that control application of aerosol-aware scheme REAL, DIMENSION(ims:ime,kms:kme,jms:jme), OPTIONAL, INTENT(INOUT) :: nwfa, nifa REAL, DIMENSION(ims:ime,jms:jme), OPTIONAL, INTENT(INOUT) :: nwfa2d REAL, OPTIONAL, INTENT(IN) :: DX, DY LOGICAL, OPTIONAL, INTENT(IN) :: is_start INTEGER:: i, j, k, l, m, n REAL:: h_01, niIN3, niCCN3, max_test LOGICAL:: micro_init, has_CCN, has_IN CHARACTER*256:: mp_debug is_aerosol_aware = .FALSE. micro_init = .FALSE. has_CCN = .FALSE. has_IN = .FALSE. write(mp_debug,*) ' DEBUG checking column of hgt ', its+1,jts+1 CALL wrf_debug(250, mp_debug) do k = kts, kte write(mp_debug,*) ' DEBUGT k, hgt = ', k, hgt(its+1,k,jts+1) CALL wrf_debug(250, mp_debug) enddo if (PRESENT(nwfa2d) .AND. PRESENT(nwfa) .AND. PRESENT(nifa)) is_aerosol_aware = .TRUE. if (is_aerosol_aware) then !..Check for existing aerosol data, both CCN and IN aerosols. If missing !.. fill in just a basic vertical profile, somewhat boundary-layer following. #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) max_test = wrf_dm_max_real ( MAXVAL(nwfa(its:ite-1,:,jts:jte-1)) ) #else max_test = MAXVAL ( nwfa(its:ite-1,:,jts:jte-1) ) #endif if (max_test .lt. eps) then write(mp_debug,*) ' Apparently there are no initial CCN aerosols.' CALL wrf_debug(100, mp_debug) write(mp_debug,*) ' checked column at point (i,j) = ', its,jts CALL wrf_debug(100, mp_debug) do j = jts, min(jde-1,jte) do i = its, min(ide-1,ite) if (hgt(i,1,j).le.1000.0) then h_01 = 0.8 elseif (hgt(i,1,j).ge.2500.0) then h_01 = 0.01 else h_01 = 0.8*cos(hgt(i,1,j)*0.001 - 1.0) endif niCCN3 = -1.0*ALOG(naCCN1/naCCN0)/h_01 nwfa(i,1,j) = naCCN1+naCCN0*exp(-((hgt(i,2,j)-hgt(i,1,j))/1000.)*niCCN3) do k = 2, kte nwfa(i,k,j) = naCCN1+naCCN0*exp(-((hgt(i,k,j)-hgt(i,1,j))/1000.)*niCCN3) enddo enddo enddo else has_CCN = .TRUE. write(mp_debug,*) ' Apparently initial CCN aerosols are present.' CALL wrf_debug(100, mp_debug) write(mp_debug,*) ' column sum at point (i,j) = ', its,jts, SUM(nwfa(its,:,jts)) CALL wrf_debug(100, mp_debug) endif #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) max_test = wrf_dm_max_real ( MAXVAL(nifa(its:ite-1,:,jts:jte-1)) ) #else max_test = MAXVAL ( nifa(its:ite-1,:,jts:jte-1) ) #endif if (max_test .lt. eps) then write(mp_debug,*) ' Apparently there are no initial IN aerosols.' CALL wrf_debug(100, mp_debug) write(mp_debug,*) ' checked column at point (i,j) = ', its,jts CALL wrf_debug(100, mp_debug) do j = jts, min(jde-1,jte) do i = its, min(ide-1,ite) if (hgt(i,1,j).le.1000.0) then h_01 = 0.8 elseif (hgt(i,1,j).ge.2500.0) then h_01 = 0.01 else h_01 = 0.8*cos(hgt(i,1,j)*0.001 - 1.0) endif niIN3 = -1.0*ALOG(naIN1/naIN0)/h_01 nifa(i,1,j) = naIN1+naIN0*exp(-((hgt(i,2,j)-hgt(i,1,j))/1000.)*niIN3) do k = 2, kte nifa(i,k,j) = naIN1+naIN0*exp(-((hgt(i,k,j)-hgt(i,1,j))/1000.)*niIN3) enddo enddo enddo else has_IN = .TRUE. write(mp_debug,*) ' Apparently initial IN aerosols are present.' CALL wrf_debug(100, mp_debug) write(mp_debug,*) ' column sum at point (i,j) = ', its,jts, SUM(nifa(its,:,jts)) CALL wrf_debug(100, mp_debug) endif !..Capture initial state lowest level CCN aerosol data in 2D array. ! ADN 2.11.15 uncommented below do j = jts, min(jde-1,jte) do i = its, min(ide-1,ite) nwfa2d(i,j) = nwfa(i,kts,j) enddo enddo !..Scale the lowest level aerosol data into an emissions rate. This is !.. very far from ideal, but need higher emissions where larger amount !.. of existing and lesser emissions where not already lots of aerosols !.. for first-order simplistic approach. Later, proper connection to !.. emission inventory would be better, but, for now, scale like this: !.. where: Nwfa=50 per cc, emit 0.875E4 aerosols per kg per second !.. Nwfa=500 per cc, emit 0.875E5 aerosols per kg per second !.. Nwfa=5000 per cc, emit 0.875E6 aerosols per kg per second !.. for a grid with 20km spacing and scale accordingly for other spacings. ! ADN 2.11.15 commented out the below since I'll add my emissions elsewhere ! if (is_start) then ! if (SQRT(DX*DY)/20000.0 .ge. 1.0) then ! h_01 = 0.875 ! else ! h_01 = (0.875 + 0.125*((20000.-SQRT(DX*DY))/16000.)) * SQRT(DX*DY)/20000. ! endif ! write(mp_debug,*) ' aerosol surface flux emission scale factor is: ', h_01 ! CALL wrf_debug(100, mp_debug) ! do j = jts, min(jde-1,jte) ! do i = its, min(ide-1,ite) ! nwfa2d(i,j) = 10.0**(LOG10(nwfa(i,kts,j)*1.E-6)-3.69897) ! nwfa2d(i,j) = nwfa2d(i,j)*h_01 * 1.E6 ! enddo ! enddo !! else !! write(mp_debug,*) ' sample (lower-left) aerosol surface flux emission rate: ', nwfa2d(1,1) !! CALL wrf_debug(100, mp_debug) ! endif endif !..Allocate space for lookup tables (J. Michalakes 2009Jun08). if (.NOT. ALLOCATED(tcg_racg) ) then ALLOCATE(tcg_racg(ntb_g1,ntb_g,ntb_r1,ntb_r)) micro_init = .TRUE. endif if (.NOT. ALLOCATED(tmr_racg)) ALLOCATE(tmr_racg(ntb_g1,ntb_g,ntb_r1,ntb_r)) if (.NOT. ALLOCATED(tcr_gacr)) ALLOCATE(tcr_gacr(ntb_g1,ntb_g,ntb_r1,ntb_r)) if (.NOT. ALLOCATED(tmg_gacr)) ALLOCATE(tmg_gacr(ntb_g1,ntb_g,ntb_r1,ntb_r)) if (.NOT. ALLOCATED(tnr_racg)) ALLOCATE(tnr_racg(ntb_g1,ntb_g,ntb_r1,ntb_r)) if (.NOT. ALLOCATED(tnr_gacr)) ALLOCATE(tnr_gacr(ntb_g1,ntb_g,ntb_r1,ntb_r)) if (.NOT. ALLOCATED(tcs_racs1)) ALLOCATE(tcs_racs1(ntb_s,ntb_t,ntb_r1,ntb_r)) if (.NOT. ALLOCATED(tmr_racs1)) ALLOCATE(tmr_racs1(ntb_s,ntb_t,ntb_r1,ntb_r)) if (.NOT. ALLOCATED(tcs_racs2)) ALLOCATE(tcs_racs2(ntb_s,ntb_t,ntb_r1,ntb_r)) if (.NOT. ALLOCATED(tmr_racs2)) ALLOCATE(tmr_racs2(ntb_s,ntb_t,ntb_r1,ntb_r)) if (.NOT. ALLOCATED(tcr_sacr1)) ALLOCATE(tcr_sacr1(ntb_s,ntb_t,ntb_r1,ntb_r)) if (.NOT. ALLOCATED(tms_sacr1)) ALLOCATE(tms_sacr1(ntb_s,ntb_t,ntb_r1,ntb_r)) if (.NOT. ALLOCATED(tcr_sacr2)) ALLOCATE(tcr_sacr2(ntb_s,ntb_t,ntb_r1,ntb_r)) if (.NOT. ALLOCATED(tms_sacr2)) ALLOCATE(tms_sacr2(ntb_s,ntb_t,ntb_r1,ntb_r)) if (.NOT. ALLOCATED(tnr_racs1)) ALLOCATE(tnr_racs1(ntb_s,ntb_t,ntb_r1,ntb_r)) if (.NOT. ALLOCATED(tnr_racs2)) ALLOCATE(tnr_racs2(ntb_s,ntb_t,ntb_r1,ntb_r)) if (.NOT. ALLOCATED(tnr_sacr1)) ALLOCATE(tnr_sacr1(ntb_s,ntb_t,ntb_r1,ntb_r)) if (.NOT. ALLOCATED(tnr_sacr2)) ALLOCATE(tnr_sacr2(ntb_s,ntb_t,ntb_r1,ntb_r)) if (.NOT. ALLOCATED(tpi_qcfz)) ALLOCATE(tpi_qcfz(ntb_c,nbc,45,ntb_IN)) if (.NOT. ALLOCATED(tni_qcfz)) ALLOCATE(tni_qcfz(ntb_c,nbc,45,ntb_IN)) if (.NOT. ALLOCATED(tpi_qrfz)) ALLOCATE(tpi_qrfz(ntb_r,ntb_r1,45,ntb_IN)) if (.NOT. ALLOCATED(tpg_qrfz)) ALLOCATE(tpg_qrfz(ntb_r,ntb_r1,45,ntb_IN)) if (.NOT. ALLOCATED(tni_qrfz)) ALLOCATE(tni_qrfz(ntb_r,ntb_r1,45,ntb_IN)) if (.NOT. ALLOCATED(tnr_qrfz)) ALLOCATE(tnr_qrfz(ntb_r,ntb_r1,45,ntb_IN)) if (.NOT. ALLOCATED(tps_iaus)) ALLOCATE(tps_iaus(ntb_i,ntb_i1)) if (.NOT. ALLOCATED(tni_iaus)) ALLOCATE(tni_iaus(ntb_i,ntb_i1)) if (.NOT. ALLOCATED(tpi_ide)) ALLOCATE(tpi_ide(ntb_i,ntb_i1)) if (.NOT. ALLOCATED(t_Efrw)) ALLOCATE(t_Efrw(nbr,nbc)) if (.NOT. ALLOCATED(t_Efsw)) ALLOCATE(t_Efsw(nbs,nbc)) if (.NOT. ALLOCATED(tnr_rev)) ALLOCATE(tnr_rev(nbr, ntb_r1, ntb_r)) if (.NOT. ALLOCATED(tpc_wev)) ALLOCATE(tpc_wev(nbc,ntb_c,nbc)) if (.NOT. ALLOCATED(tnc_wev)) ALLOCATE(tnc_wev(nbc,ntb_c,nbc)) if (.NOT. ALLOCATED(tnccn_act)) & ALLOCATE(tnccn_act(ntb_arc,ntb_arw,ntb_art,ntb_arr,ntb_ark)) if (micro_init) then !..From Martin et al. (1994), assign gamma shape parameter mu for cloud !.. drops according to general dispersion characteristics (disp=~0.25 !.. for Maritime and 0.45 for Continental). !.. disp=SQRT((mu+2)/(mu+1) - 1) so mu varies from 15 for Maritime !.. to 2 for really dirty air. This not used in 2-moment cloud water !.. scheme and nu_c used instead and varies from 2 to 15 (integer-only). mu_c = MIN(15., (1000.E6/Nt_c + 2.)) !..Schmidt number to one-third used numerous times. Sc3 = Sc**(1./3.) !..Compute min ice diam from mass, min snow/graupel mass from diam. D0i = (xm0i/am_i)**(1./bm_i) xm0s = am_s * D0s**bm_s xm0g = am_g * D0g**bm_g !..These constants various exponents and gamma() assoc with cloud, !.. rain, snow, and graupel. do n = 1, 15 cce(1,n) = n + 1. cce(2,n) = bm_r + n + 1. cce(3,n) = bm_r + n + 4. cce(4,n) = n + bv_c + 1. cce(5,n) = bm_r + n + bv_c + 1. ccg(1,n) = WGAMMA(cce(1,n)) ccg(2,n) = WGAMMA(cce(2,n)) ccg(3,n) = WGAMMA(cce(3,n)) ccg(4,n) = WGAMMA(cce(4,n)) ccg(5,n) = WGAMMA(cce(5,n)) ocg1(n) = 1./ccg(1,n) ocg2(n) = 1./ccg(2,n) enddo cie(1) = mu_i + 1. cie(2) = bm_i + mu_i + 1. cie(3) = bm_i + mu_i + bv_i + 1. cie(4) = mu_i + bv_i + 1. cie(5) = mu_i + 2. cie(6) = bm_i*0.5 + mu_i + bv_i + 1. cie(7) = bm_i*0.5 + mu_i + 1. cig(1) = WGAMMA(cie(1)) cig(2) = WGAMMA(cie(2)) cig(3) = WGAMMA(cie(3)) cig(4) = WGAMMA(cie(4)) cig(5) = WGAMMA(cie(5)) cig(6) = WGAMMA(cie(6)) cig(7) = WGAMMA(cie(7)) oig1 = 1./cig(1) oig2 = 1./cig(2) obmi = 1./bm_i cre(1) = bm_r + 1. cre(2) = mu_r + 1. cre(3) = bm_r + mu_r + 1. cre(4) = bm_r*2. + mu_r + 1. cre(5) = mu_r + bv_r + 1. cre(6) = bm_r + mu_r + bv_r + 1. cre(7) = bm_r*0.5 + mu_r + bv_r + 1. cre(8) = bm_r + mu_r + bv_r + 3. cre(9) = mu_r + bv_r + 3. cre(10) = mu_r + 2. cre(11) = 0.5*(bv_r + 5. + 2.*mu_r) cre(12) = bm_r*0.5 + mu_r + 1. cre(13) = bm_r*2. + mu_r + bv_r + 1. do n = 1, 13 crg(n) = WGAMMA(cre(n)) enddo obmr = 1./bm_r ore1 = 1./cre(1) org1 = 1./crg(1) org2 = 1./crg(2) org3 = 1./crg(3) cse(1) = bm_s + 1. cse(2) = bm_s + 2. cse(3) = bm_s*2. cse(4) = bm_s + bv_s + 1. cse(5) = bm_s*2. + bv_s + 1. cse(6) = bm_s*2. + 1. cse(7) = bm_s + mu_s + 1. cse(8) = bm_s + mu_s + 2. cse(9) = bm_s + mu_s + 3. cse(10) = bm_s + mu_s + bv_s + 1. cse(11) = bm_s*2. + mu_s + bv_s + 1. cse(12) = bm_s*2. + mu_s + 1. cse(13) = bv_s + 2. cse(14) = bm_s + bv_s cse(15) = mu_s + 1. cse(16) = 1.0 + (1.0 + bv_s)/2. cse(17) = cse(16) + mu_s + 1. cse(18) = bv_s + mu_s + 3. do n = 1, 18 csg(n) = WGAMMA(cse(n)) enddo oams = 1./am_s obms = 1./bm_s ocms = oams**obms cge(1) = bm_g + 1. cge(2) = mu_g + 1. cge(3) = bm_g + mu_g + 1. cge(4) = bm_g*2. + mu_g + 1. cge(5) = bm_g*2. + mu_g + bv_g + 1. cge(6) = bm_g + mu_g + bv_g + 1. cge(7) = bm_g + mu_g + bv_g + 2. cge(8) = bm_g + mu_g + bv_g + 3. cge(9) = mu_g + bv_g + 3. cge(10) = mu_g + 2. cge(11) = 0.5*(bv_g + 5. + 2.*mu_g) cge(12) = 0.5*(bv_g + 5.) + mu_g do n = 1, 12 cgg(n) = WGAMMA(cge(n)) enddo oamg = 1./am_g obmg = 1./bm_g ocmg = oamg**obmg oge1 = 1./cge(1) ogg1 = 1./cgg(1) ogg2 = 1./cgg(2) ogg3 = 1./cgg(3) !+---+-----------------------------------------------------------------+ !..Simplify various rate eqns the best we can now. !+---+-----------------------------------------------------------------+ !..Rain collecting cloud water and cloud ice t1_qr_qc = PI*.25*av_r * crg(9) t1_qr_qi = PI*.25*av_r * crg(9) t2_qr_qi = PI*.25*am_r*av_r * crg(8) !..Graupel collecting cloud water t1_qg_qc = PI*.25*av_g * cgg(9) !..Snow collecting cloud water t1_qs_qc = PI*.25*av_s !..Snow collecting cloud ice t1_qs_qi = PI*.25*av_s !..Evaporation of rain; ignore depositional growth of rain. t1_qr_ev = 0.78 * crg(10) t2_qr_ev = 0.308*Sc3*SQRT(av_r) * crg(11) !..Sublimation/depositional growth of snow t1_qs_sd = 0.86 t2_qs_sd = 0.28*Sc3*SQRT(av_s) !..Melting of snow t1_qs_me = PI*4.*C_sqrd*olfus * 0.86 t2_qs_me = PI*4.*C_sqrd*olfus * 0.28*Sc3*SQRT(av_s) !..Sublimation/depositional growth of graupel t1_qg_sd = 0.86 * cgg(10) t2_qg_sd = 0.28*Sc3*SQRT(av_g) * cgg(11) !..Melting of graupel t1_qg_me = PI*4.*C_cube*olfus * 0.86 * cgg(10) t2_qg_me = PI*4.*C_cube*olfus * 0.28*Sc3*SQRT(av_g) * cgg(11) !..Constants for helping find lookup table indexes. nic2 = NINT(ALOG10(r_c(1))) nii2 = NINT(ALOG10(r_i(1))) nii3 = NINT(ALOG10(Nt_i(1))) nir2 = NINT(ALOG10(r_r(1))) nir3 = NINT(ALOG10(N0r_exp(1))) nis2 = NINT(ALOG10(r_s(1))) nig2 = NINT(ALOG10(r_g(1))) nig3 = NINT(ALOG10(N0g_exp(1))) niIN2 = NINT(ALOG10(Nt_IN(1))) !..Create bins of cloud water (from min diameter up to 100 microns). Dc(1) = D0c*1.0d0 dtc(1) = D0c*1.0d0 do n = 2, nbc Dc(n) = Dc(n-1) + 1.0D-6 dtc(n) = (Dc(n) - Dc(n-1)) enddo !..Create bins of cloud ice (from min diameter up to 5x min snow size). xDx(1) = D0i*1.0d0 xDx(nbi+1) = 5.0d0*D0s do n = 2, nbi xDx(n) = DEXP(DFLOAT(n-1)/DFLOAT(nbi) & *DLOG(xDx(nbi+1)/xDx(1)) +DLOG(xDx(1))) enddo do n = 1, nbi Di(n) = DSQRT(xDx(n)*xDx(n+1)) dti(n) = xDx(n+1) - xDx(n) enddo !..Create bins of rain (from min diameter up to 5 mm). xDx(1) = D0r*1.0d0 xDx(nbr+1) = 0.005d0 do n = 2, nbr xDx(n) = DEXP(DFLOAT(n-1)/DFLOAT(nbr) & *DLOG(xDx(nbr+1)/xDx(1)) +DLOG(xDx(1))) enddo do n = 1, nbr Dr(n) = DSQRT(xDx(n)*xDx(n+1)) dtr(n) = xDx(n+1) - xDx(n) enddo !..Create bins of snow (from min diameter up to 2 cm). xDx(1) = D0s*1.0d0 xDx(nbs+1) = 0.02d0 do n = 2, nbs xDx(n) = DEXP(DFLOAT(n-1)/DFLOAT(nbs) & *DLOG(xDx(nbs+1)/xDx(1)) +DLOG(xDx(1))) enddo do n = 1, nbs Ds(n) = DSQRT(xDx(n)*xDx(n+1)) dts(n) = xDx(n+1) - xDx(n) enddo !..Create bins of graupel (from min diameter up to 5 cm). xDx(1) = D0g*1.0d0 xDx(nbg+1) = 0.05d0 do n = 2, nbg xDx(n) = DEXP(DFLOAT(n-1)/DFLOAT(nbg) & *DLOG(xDx(nbg+1)/xDx(1)) +DLOG(xDx(1))) enddo do n = 1, nbg Dg(n) = DSQRT(xDx(n)*xDx(n+1)) dtg(n) = xDx(n+1) - xDx(n) enddo !..Create bins of cloud droplet number concentration (1 to 3000 per cc). xDx(1) = 1.0d0 xDx(nbc+1) = 3000.0d0 do n = 2, nbc xDx(n) = DEXP(DFLOAT(n-1)/DFLOAT(nbc) & *DLOG(xDx(nbc+1)/xDx(1)) +DLOG(xDx(1))) enddo do n = 1, nbc t_Nc(n) = DSQRT(xDx(n)*xDx(n+1)) * 1.D6 enddo nic1 = DLOG(t_Nc(nbc)/t_Nc(1)) !+---+-----------------------------------------------------------------+ !..Create lookup tables for most costly calculations. !+---+-----------------------------------------------------------------+ do m = 1, ntb_r do k = 1, ntb_r1 do j = 1, ntb_g do i = 1, ntb_g1 tcg_racg(i,j,k,m) = 0.0d0 tmr_racg(i,j,k,m) = 0.0d0 tcr_gacr(i,j,k,m) = 0.0d0 tmg_gacr(i,j,k,m) = 0.0d0 tnr_racg(i,j,k,m) = 0.0d0 tnr_gacr(i,j,k,m) = 0.0d0 enddo enddo enddo enddo do m = 1, ntb_r do k = 1, ntb_r1 do j = 1, ntb_t do i = 1, ntb_s tcs_racs1(i,j,k,m) = 0.0d0 tmr_racs1(i,j,k,m) = 0.0d0 tcs_racs2(i,j,k,m) = 0.0d0 tmr_racs2(i,j,k,m) = 0.0d0 tcr_sacr1(i,j,k,m) = 0.0d0 tms_sacr1(i,j,k,m) = 0.0d0 tcr_sacr2(i,j,k,m) = 0.0d0 tms_sacr2(i,j,k,m) = 0.0d0 tnr_racs1(i,j,k,m) = 0.0d0 tnr_racs2(i,j,k,m) = 0.0d0 tnr_sacr1(i,j,k,m) = 0.0d0 tnr_sacr2(i,j,k,m) = 0.0d0 enddo enddo enddo enddo do m = 1, ntb_IN do k = 1, 45 do j = 1, ntb_r1 do i = 1, ntb_r tpi_qrfz(i,j,k,m) = 0.0d0 tni_qrfz(i,j,k,m) = 0.0d0 tpg_qrfz(i,j,k,m) = 0.0d0 tnr_qrfz(i,j,k,m) = 0.0d0 enddo enddo do j = 1, nbc do i = 1, ntb_c tpi_qcfz(i,j,k,m) = 0.0d0 tni_qcfz(i,j,k,m) = 0.0d0 enddo enddo enddo enddo do j = 1, ntb_i1 do i = 1, ntb_i tps_iaus(i,j) = 0.0d0 tni_iaus(i,j) = 0.0d0 tpi_ide(i,j) = 0.0d0 enddo enddo do j = 1, nbc do i = 1, nbr t_Efrw(i,j) = 0.0 enddo do i = 1, nbs t_Efsw(i,j) = 0.0 enddo enddo do k = 1, ntb_r do j = 1, ntb_r1 do i = 1, nbr tnr_rev(i,j,k) = 0.0d0 enddo enddo enddo do k = 1, nbc do j = 1, ntb_c do i = 1, nbc tpc_wev(i,j,k) = 0.0d0 tnc_wev(i,j,k) = 0.0d0 enddo enddo enddo do m = 1, ntb_ark do l = 1, ntb_arr do k = 1, ntb_art do j = 1, ntb_arw do i = 1, ntb_arc tnccn_act(i,j,k,l,m) = 1.0 enddo enddo enddo enddo enddo CALL wrf_debug(150, 'CREATING MICROPHYSICS LOOKUP TABLES ... ') WRITE (wrf_err_message, '(a, f5.2, a, f5.2, a, f5.2, a, f5.2)') & ' using: mu_c=',mu_c,' mu_i=',mu_i,' mu_r=',mu_r,' mu_g=',mu_g CALL wrf_debug(150, wrf_err_message) !..Read a static file containing CCN activation of aerosols. The !.. data were created from a parcel model by Feingold & Heymsfield with !.. further changes by Eidhammer and Kriedenweis. if (is_aerosol_aware) then CALL wrf_debug(200, ' calling table_ccnAct routine') call table_ccnAct endif !..Collision efficiency between rain/snow and cloud water. CALL wrf_debug(200, ' creating qc collision eff tables') call table_Efrw call table_Efsw !..Drop evaporation. CALL wrf_debug(200, ' creating rain evap table') call table_dropEvap !..Initialize various constants for computing radar reflectivity. xam_r = am_r xbm_r = bm_r xmu_r = mu_r xam_s = am_s xbm_s = bm_s xmu_s = mu_s xam_g = am_g xbm_g = bm_g xmu_g = mu_g call radar_init if (.not. iiwarm) then !..Rain collecting graupel & graupel collecting rain. CALL wrf_debug(200, ' creating rain collecting graupel table') call qr_acr_qg !..Rain collecting snow & snow collecting rain. CALL wrf_debug(200, ' creating rain collecting snow table') call qr_acr_qs !..Cloud water and rain freezing (Bigg, 1953). CALL wrf_debug(200, ' creating freezing of water drops table') call freezeH2O !..Conversion of some ice mass into snow category. CALL wrf_debug(200, ' creating ice converting to snow table') call qi_aut_qs endif CALL wrf_debug(150, ' ... DONE microphysical lookup tables') endif END SUBROUTINE thompson_init !+---+-----------------------------------------------------------------+ !ctrlL !+---+-----------------------------------------------------------------+ !..This is a wrapper routine designed to transfer values from 3D to 1D. !+---+-----------------------------------------------------------------+ SUBROUTINE mp_gt_driver(qv, qc, qr, qi, qs, qg, ni, nr, nc, & nwfa, nifa, nwfa2d, & th, pii, p, w, dz, dt_in, itimestep, & RAINNC, RAINNCV, & SNOWNC, SNOWNCV, & GRAUPELNC, GRAUPELNCV, SR, & #if ( WRF_CHEM == 1 ) rainprod, evapprod, & #endif refl_10cm, diagflag, do_radar_ref, & nc_act,nc_evap,nc_scav,frac_act, & ! ADN 2.11.15 rain_auto,rain_coll,rain_evap, & cloud_cond,cloud_evap, & cloudn_cond,cloudn_evap,cloudn_auto,cloudn_coll, & rainn_evap,rainn_auto,rainn_coll, & ht, & ! ADN 2.11.15 re_cloud, re_ice, re_snow, & has_reqc, has_reqi, has_reqs, & ids,ide, jds,jde, kds,kde, & ! domain dims ims,ime, jms,jme, kms,kme, & ! memory dims its,ite, jts,jte, kts,kte) ! tile dims implicit none !..Subroutine arguments INTEGER, INTENT(IN):: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT):: & qv, qc, qr, qi, qs, qg, ni, nr, th REAL, DIMENSION(ims:ime, kms:kme, jms:jme), OPTIONAL, INTENT(INOUT):: & nc, nwfa, nifa REAL, DIMENSION(ims:ime, jms:jme), OPTIONAL, INTENT(IN):: nwfa2d REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT):: & re_cloud, re_ice, re_snow INTEGER, INTENT(IN):: has_reqc, has_reqi, has_reqs #if ( WRF_CHEM == 1 ) REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT):: & rainprod, evapprod #endif REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(IN):: & pii, p, w, dz REAL, DIMENSION(ims:ime, jms:jme), INTENT(INOUT):: & RAINNC, RAINNCV, SR REAL, DIMENSION(ims:ime, jms:jme), OPTIONAL, INTENT(INOUT):: & SNOWNC, SNOWNCV, GRAUPELNC, GRAUPELNCV REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT):: & refl_10cm REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT):: & ! ADN 2.11.15 nc_act, nc_evap, nc_scav, frac_act REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT):: & ! ADN 2.11.15 rain_auto,rain_coll,rain_evap, & cloud_cond,cloud_evap REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT):: & ! ADN 2.11.15 cloudn_cond,cloudn_evap,cloudn_auto,cloudn_coll, & rainn_evap,rainn_auto,rainn_coll REAL, DIMENSION(ims:ime, jms:jme), INTENT(INOUT):: & ! ADN 2.11.15 ht REAL, INTENT(IN):: dt_in INTEGER, INTENT(IN):: itimestep !..Local variables REAL, DIMENSION(kts:kte):: & qv1d, qc1d, qi1d, qr1d, qs1d, qg1d, ni1d, & nr1d, nc1d, nwfa1d, nifa1d, & t1d, p1d, w1d, dz1d, dBZ REAL, DIMENSION(kts:kte):: re_qc1d, re_qi1d, re_qs1d REAL, DIMENSION(kts:kte):: scratch_act, scratch_evap, & scratch_scav, scratch_frac ! ADN 2.11.15 REAL, DIMENSION(kts:kte):: scratch_rauto,scratch_rcoll, & scratch_revap,scratch_ccond, & scratch_cevap REAL, DIMENSION(kts:kte):: scratch_cncond,scratch_cnevap,scratch_cnauto, & scratch_cncoll,scratch_rnevap, & scratch_rnauto,scratch_rncoll #if ( WRF_CHEM == 1 ) REAL, DIMENSION(kts:kte):: & rainprod1d, evapprod1d #endif REAL, DIMENSION(its:ite, jts:jte):: pcp_ra, pcp_sn, pcp_gr, pcp_ic REAL:: dt, pptrain, pptsnow, pptgraul, pptice REAL:: qc_max, qr_max, qs_max, qi_max, qg_max, ni_max, nr_max REAL:: nwfa1, rho ! ADN 2.11.15 added rho INTEGER:: i, j, k INTEGER:: imax_qc,imax_qr,imax_qi,imax_qs,imax_qg,imax_ni,imax_nr INTEGER:: jmax_qc,jmax_qr,jmax_qi,jmax_qs,jmax_qg,jmax_ni,jmax_nr INTEGER:: kmax_qc,kmax_qr,kmax_qi,kmax_qs,kmax_qg,kmax_ni,kmax_nr INTEGER:: i_start, j_start, i_end, j_end LOGICAL, OPTIONAL, INTENT(IN) :: diagflag INTEGER, OPTIONAL, INTENT(IN) :: do_radar_ref CHARACTER*256:: mp_debug !+---+ i_start = its j_start = jts i_end = MIN(ite, ide-1) j_end = MIN(jte, jde-1) !..For idealized testing by developer. ! if ( (ide-ids+1).gt.4 .and. (jde-jds+1).lt.4 .and. & ! ids.eq.its.and.ide.eq.ite.and.jds.eq.jts.and.jde.eq.jte) then ! i_start = its + 2 ! i_end = ite ! j_start = jts ! j_end = jte ! endif dt = dt_in qc_max = 0. qr_max = 0. qs_max = 0. qi_max = 0. qg_max = 0 ni_max = 0. nr_max = 0. imax_qc = 0 imax_qr = 0 imax_qi = 0 imax_qs = 0 imax_qg = 0 imax_ni = 0 imax_nr = 0 jmax_qc = 0 jmax_qr = 0 jmax_qi = 0 jmax_qs = 0 jmax_qg = 0 jmax_ni = 0 jmax_nr = 0 kmax_qc = 0 kmax_qr = 0 kmax_qi = 0 kmax_qs = 0 kmax_qg = 0 kmax_ni = 0 kmax_nr = 0 do i = 1, 256 mp_debug(i:i) = char(0) enddo if (.NOT. is_aerosol_aware .AND. PRESENT(nc) .AND. PRESENT(nwfa) & .AND. PRESENT(nifa) .AND. PRESENT(nwfa2d)) then write(mp_debug,*) 'WARNING, nc-nwfa-nifa-nwfa2d present but is_aerosol_aware is FALSE' CALL wrf_debug(0, mp_debug) endif j_loop: do j = j_start, j_end i_loop: do i = i_start, i_end pptrain = 0. pptsnow = 0. pptgraul = 0. pptice = 0. RAINNCV(i,j) = 0. IF ( PRESENT (snowncv) ) THEN SNOWNCV(i,j) = 0. ENDIF IF ( PRESENT (graupelncv) ) THEN GRAUPELNCV(i,j) = 0. ENDIF SR(i,j) = 0. do k = kts, kte ! ADN 2.11.15 scratch_act(k) = 0. scratch_evap(k) = 0. scratch_scav(k) = 0. scratch_frac(k) = 0. scratch_rauto(k) = 0. scratch_rcoll(k) = 0. scratch_revap(k) = 0. scratch_ccond(k) = 0. scratch_cevap(k) = 0. scratch_cncond(k) = 0. scratch_cnevap(k) = 0. scratch_cnauto(k) = 0. scratch_cncoll(k) = 0. scratch_rnevap(k) = 0. scratch_rnauto(k) = 0. scratch_rncoll(k) = 0. enddo do k = kts, kte t1d(k) = th(i,k,j)*pii(i,k,j) p1d(k) = p(i,k,j) w1d(k) = w(i,k,j) dz1d(k) = dz(i,k,j) qv1d(k) = qv(i,k,j) qc1d(k) = qc(i,k,j) qi1d(k) = qi(i,k,j) qr1d(k) = qr(i,k,j) qs1d(k) = qs(i,k,j) qg1d(k) = qg(i,k,j) ni1d(k) = ni(i,k,j) nr1d(k) = nr(i,k,j) enddo if (is_aerosol_aware) then do k = kts, kte nc1d(k) = nc(i,k,j) nwfa1d(k) = nwfa(i,k,j) nifa1d(k) = nifa(i,k,j) enddo nwfa1 = nwfa2d(i,j) else do k = kts, kte nc1d(k) = Nt_c nwfa1d(k) = 11.1E6 nifa1d(k) = naIN1*0.01 enddo nwfa1 = 11.1E6 endif call mp_thompson(qv1d, qc1d, qi1d, qr1d, qs1d, qg1d, ni1d, & nr1d, nc1d, nwfa1d, nifa1d, t1d, p1d, w1d, dz1d, & scratch_act, scratch_evap, scratch_scav, scratch_frac, & ! ADN 2.11.15 scratch_rauto,scratch_rcoll,scratch_revap, & scratch_ccond,scratch_cevap, & scratch_cncond,scratch_cnevap,scratch_cnauto,scratch_cncoll, & scratch_rnevap,scratch_rnauto,scratch_rncoll, & pptrain, pptsnow, pptgraul, pptice, & #if ( WRF_CHEM == 1 ) rainprod1d, evapprod1d, & #endif kts, kte, dt, i, j) pcp_ra(i,j) = pptrain pcp_sn(i,j) = pptsnow pcp_gr(i,j) = pptgraul pcp_ic(i,j) = pptice RAINNCV(i,j) = pptrain + pptsnow + pptgraul + pptice RAINNC(i,j) = RAINNC(i,j) + pptrain + pptsnow + pptgraul + pptice IF ( PRESENT(snowncv) .AND. PRESENT(snownc) ) THEN SNOWNCV(i,j) = pptsnow + pptice SNOWNC(i,j) = SNOWNC(i,j) + pptsnow + pptice ENDIF IF ( PRESENT(graupelncv) .AND. PRESENT(graupelnc) ) THEN GRAUPELNCV(i,j) = pptgraul GRAUPELNC(i,j) = GRAUPELNC(i,j) + pptgraul ENDIF SR(i,j) = (pptsnow + pptgraul + pptice)/(RAINNCV(i,j)+1.e-12) !..Reset lowest model level to initial state aerosols (fake sfc source). !.. Changed 13 May 2013 to fake emissions in which nwfa2d is aerosol !.. number tendency (number per kg per second). if (is_aerosol_aware) then !-GT nwfa1d(kts) = nwfa1 ! nwfa1d(kts) = nwfa1d(kts) + nwfa2d(i,j)*dt_in ! ADN 2.11.15 commented ! ADN 2.11.15 added if statement if (ht(i,j) > 5) then rho = 0.622*p1d(kts)/(R*t1d(kts)*(qv1d(kts)+0.622)) nwfa1d(kts) = nwfa1d(kts)+(5*10**6)/rho*dt ! ADN 3.19.15 the number before *10**6 tells you the aerosol source number ! nwfa1d(kts) = nwfa1d(kts) ! write(mp_debug,*) 'NWFA Source = ', ! CALL wrf_debug(0, mp_debug) else nwfa1d(kts) = nwfa1d(kts) end if do k = kts, kte nc(i,k,j) = nc1d(k) nwfa(i,k,j) = nwfa1d(k) nifa(i,k,j) = nifa1d(k) enddo endif do k = kts, kte qv(i,k,j) = qv1d(k) qc(i,k,j) = qc1d(k) qi(i,k,j) = qi1d(k) qr(i,k,j) = qr1d(k) qs(i,k,j) = qs1d(k) qg(i,k,j) = qg1d(k) ni(i,k,j) = ni1d(k) nr(i,k,j) = nr1d(k) th(i,k,j) = t1d(k)/pii(i,k,j) #if ( WRF_CHEM == 1 ) rainprod(i,k,j) = rainprod1d(k) evapprod(i,k,j) = evapprod1d(k) #endif if (qc1d(k) .gt. qc_max) then imax_qc = i jmax_qc = j kmax_qc = k qc_max = qc1d(k) elseif (qc1d(k) .lt. 0.0) then write(mp_debug,*) 'WARNING, negative qc ', qc1d(k), & ' at i,j,k=', i,j,k CALL wrf_debug(150, mp_debug) endif if (qr1d(k) .gt. qr_max) then imax_qr = i jmax_qr = j kmax_qr = k qr_max = qr1d(k) elseif (qr1d(k) .lt. 0.0) then write(mp_debug,*) 'WARNING, negative qr ', qr1d(k), & ' at i,j,k=', i,j,k CALL wrf_debug(150, mp_debug) endif if (nr1d(k) .gt. nr_max) then imax_nr = i jmax_nr = j kmax_nr = k nr_max = nr1d(k) elseif (nr1d(k) .lt. 0.0) then write(mp_debug,*) 'WARNING, negative nr ', nr1d(k), & ' at i,j,k=', i,j,k CALL wrf_debug(150, mp_debug) endif if (qs1d(k) .gt. qs_max) then imax_qs = i jmax_qs = j kmax_qs = k qs_max = qs1d(k) elseif (qs1d(k) .lt. 0.0) then write(mp_debug,*) 'WARNING, negative qs ', qs1d(k), & ' at i,j,k=', i,j,k CALL wrf_debug(150, mp_debug) endif if (qi1d(k) .gt. qi_max) then imax_qi = i jmax_qi = j kmax_qi = k qi_max = qi1d(k) elseif (qi1d(k) .lt. 0.0) then write(mp_debug,*) 'WARNING, negative qi ', qi1d(k), & ' at i,j,k=', i,j,k CALL wrf_debug(150, mp_debug) endif if (qg1d(k) .gt. qg_max) then imax_qg = i jmax_qg = j kmax_qg = k qg_max = qg1d(k) elseif (qg1d(k) .lt. 0.0) then write(mp_debug,*) 'WARNING, negative qg ', qg1d(k), & ' at i,j,k=', i,j,k CALL wrf_debug(150, mp_debug) endif if (ni1d(k) .gt. ni_max) then imax_ni = i jmax_ni = j kmax_ni = k ni_max = ni1d(k) elseif (ni1d(k) .lt. 0.0) then write(mp_debug,*) 'WARNING, negative ni ', ni1d(k), & ' at i,j,k=', i,j,k CALL wrf_debug(150, mp_debug) endif if (qv1d(k) .lt. 0.0) then write(mp_debug,*) 'WARNING, negative qv ', qv1d(k), & ' at i,j,k=', i,j,k CALL wrf_debug(150, mp_debug) if (k.lt.kte-2 .and. k.gt.kts+1) then write(mp_debug,*) ' below and above are: ', qv(i,k-1,j), qv(i,k+1,j) CALL wrf_debug(150, mp_debug) qv(i,k,j) = MAX(1.E-7, 0.5*(qv(i,k-1,j) + qv(i,k+1,j))) else qv(i,k,j) = 1.E-7 endif endif enddo IF ( PRESENT (diagflag) ) THEN if (diagflag .and. do_radar_ref == 1) then call calc_refl10cm (qv1d, qc1d, qr1d, nr1d, qs1d, qg1d, & t1d, p1d, dBZ, kts, kte, i, j) do k = kts, kte refl_10cm(i,k,j) = MAX(-35., dBZ(k)) enddo endif ENDIF do k = kts, kte ! ADN 2.11.15 nc_act(i,k,j) = scratch_act(k) nc_evap(i,k,j) = scratch_evap(k) nc_scav(i,k,j) = scratch_scav(k) frac_act(i,k,j) = scratch_frac(k) rain_auto(i,k,j) = scratch_rauto(k) rain_coll(i,k,j) = scratch_rcoll(k) rain_evap(i,k,j) = scratch_revap(k) cloud_cond(i,k,j) = scratch_ccond(k) cloud_evap(i,k,j) = scratch_cevap(k) cloudn_cond(i,k,j) = scratch_cncond(k) cloudn_evap(i,k,j) = scratch_cnevap(k) cloudn_auto(i,k,j) = scratch_cnauto(k) cloudn_coll(i,k,j) = scratch_cncoll(k) rainn_evap(i,k,j) = scratch_rnevap(k) rainn_auto(i,k,j) = scratch_rnauto(k) rainn_coll(i,k,j) = scratch_rncoll(k) enddo IF (has_reqc.ne.0 .and. has_reqi.ne.0 .and. has_reqs.ne.0) THEN do k = kts, kte re_qc1d(k) = 2.51E-6 re_qi1d(k) = 10.01E-6 re_qs1d(k) = 25.E-6 enddo call calc_effectRad (t1d, p1d, qv1d, qc1d, nc1d, qi1d, ni1d, qs1d, & re_qc1d, re_qi1d, re_qs1d, kts, kte) do k = kts, kte re_cloud(i,k,j) = MAX(2.51E-6, MIN(re_qc1d(k), 50.E-6)) re_ice(i,k,j) = MAX(10.01E-6, MIN(re_qi1d(k), 125.E-6)) re_snow(i,k,j) = MAX(25.E-6, MIN(re_qs1d(k), 999.E-6)) enddo ENDIF enddo i_loop enddo j_loop ! DEBUG - GT write(mp_debug,'(a,7(a,e13.6,1x,a,i3,a,i3,a,i3,a,1x))') 'MP-GT:', & 'qc: ', qc_max, '(', imax_qc, ',', jmax_qc, ',', kmax_qc, ')', & 'qr: ', qr_max, '(', imax_qr, ',', jmax_qr, ',', kmax_qr, ')', & 'qi: ', qi_max, '(', imax_qi, ',', jmax_qi, ',', kmax_qi, ')', & 'qs: ', qs_max, '(', imax_qs, ',', jmax_qs, ',', kmax_qs, ')', & 'qg: ', qg_max, '(', imax_qg, ',', jmax_qg, ',', kmax_qg, ')', & 'ni: ', ni_max, '(', imax_ni, ',', jmax_ni, ',', kmax_ni, ')', & 'nr: ', nr_max, '(', imax_nr, ',', jmax_nr, ',', kmax_nr, ')' CALL wrf_debug(150, mp_debug) ! END DEBUG - GT do i = 1, 256 mp_debug(i:i) = char(0) enddo END SUBROUTINE mp_gt_driver !+---+-----------------------------------------------------------------+ !ctrlL !+---+-----------------------------------------------------------------+ !+---+-----------------------------------------------------------------+ !.. This subroutine computes the moisture tendencies of water vapor, !.. cloud droplets, rain, cloud ice (pristine), snow, and graupel. !.. Previously this code was based on Reisner et al (1998), but few of !.. those pieces remain. A complete description is now found in !.. Thompson et al. (2004, 2008). !+---+-----------------------------------------------------------------+ ! subroutine mp_thompson (qv1d, qc1d, qi1d, qr1d, qs1d, qg1d, ni1d, & nr1d, nc1d, nwfa1d, nifa1d, t1d, p1d, w1d, dzq, & nc_act, nc_evap, nc_scav, frac_act, & ! ADN 2.11.15 rain_auto,rain_coll,rain_evap, & cloud_cond,cloud_evap, & cloudn_cond,cloudn_evap,cloudn_auto,cloudn_coll, & rainn_evap,rainn_auto,rainn_coll, & pptrain, pptsnow, pptgraul, pptice, & #if ( WRF_CHEM == 1 ) rainprod, evapprod, & #endif kts, kte, dt, ii, jj) implicit none !..Sub arguments INTEGER, INTENT(IN):: kts, kte, ii, jj REAL, DIMENSION(kts:kte), INTENT(INOUT):: & qv1d, qc1d, qi1d, qr1d, qs1d, qg1d, ni1d, & nr1d, nc1d, nwfa1d, nifa1d, t1d REAL, DIMENSION(kts:kte), INTENT(IN):: p1d, w1d, dzq REAL, INTENT(INOUT):: pptrain, pptsnow, pptgraul, pptice REAL, INTENT(IN):: dt #if ( WRF_CHEM == 1 ) REAL, DIMENSION(kts:kte), INTENT(INOUT):: & rainprod, evapprod #endif !..Local variables REAL, DIMENSION(kts:kte):: tten, qvten, qcten, qiten, & qrten, qsten, qgten, niten, nrten, ncten, nwfaten, nifaten DOUBLE PRECISION, DIMENSION(kts:kte):: prw_vcd REAL, DIMENSION(kts:kte):: nc_act, nc_evap, nc_scav, frac_act ! ADN 2.11.15 REAL, DIMENSION(kts:kte):: rain_auto,rain_coll,rain_evap, & cloud_cond,cloud_evap REAL, DIMENSION(kts:kte):: cloudn_cond,cloudn_evap,cloudn_auto,cloudn_coll, & rainn_evap,rainn_auto,rainn_coll DOUBLE PRECISION, DIMENSION(kts:kte):: pnc_wcd, pnc_wau, pnc_rcw, & pnc_scw, pnc_gcw DOUBLE PRECISION, DIMENSION(kts:kte):: pna_rca, pna_sca, pna_gca, & pnd_rcd, pnd_scd, pnd_gcd DOUBLE PRECISION, DIMENSION(kts:kte):: prr_wau, prr_rcw, prr_rcs, & prr_rcg, prr_sml, prr_gml, & prr_rci, prv_rev, & pnr_wau, pnr_rcs, pnr_rcg, & pnr_rci, pnr_sml, pnr_gml, & pnr_rev, pnr_rcr, pnr_rfz DOUBLE PRECISION, DIMENSION(kts:kte):: pri_inu, pni_inu, pri_ihm, & pni_ihm, pri_wfz, pni_wfz, & pri_rfz, pni_rfz, pri_ide, & pni_ide, pri_rci, pni_rci, & pni_sci, pni_iau, pri_iha, pni_iha DOUBLE PRECISION, DIMENSION(kts:kte):: prs_iau, prs_sci, prs_rcs, & prs_scw, prs_sde, prs_ihm, & prs_ide DOUBLE PRECISION, DIMENSION(kts:kte):: prg_scw, prg_rfz, prg_gde, & prg_gcw, prg_rci, prg_rcs, & prg_rcg, prg_ihm DOUBLE PRECISION, PARAMETER:: zeroD0 = 0.0d0 REAL, DIMENSION(kts:kte):: temp, pres, qv REAL, DIMENSION(kts:kte):: rc, ri, rr, rs, rg, ni, nr, nc, nwfa, nifa REAL, DIMENSION(kts:kte):: rho, rhof, rhof2 REAL, DIMENSION(kts:kte):: qvs, qvsi, delQvs REAL, DIMENSION(kts:kte):: satw, sati, ssatw, ssati REAL, DIMENSION(kts:kte):: diffu, visco, vsc2, & tcond, lvap, ocp, lvt2 DOUBLE PRECISION, DIMENSION(kts:kte):: ilamr, ilamg, N0_r, N0_g REAL, DIMENSION(kts:kte):: mvd_r, mvd_c REAL, DIMENSION(kts:kte):: smob, smo2, smo1, smo0, & smoc, smod, smoe, smof REAL, DIMENSION(kts:kte):: sed_r, sed_s, sed_g, sed_i, sed_n,sed_c REAL:: rgvm, delta_tp, orho, lfus2 REAL, DIMENSION(5):: onstep DOUBLE PRECISION:: N0_exp, N0_min, lam_exp, lamc, lamr, lamg DOUBLE PRECISION:: lami, ilami, ilamc REAL:: xDc, Dc_b, Dc_g, xDi, xDr, xDs, xDg, Ds_m, Dg_m DOUBLE PRECISION:: Dr_star, Dc_star REAL:: zeta1, zeta, taud, tau REAL:: stoke_r, stoke_s, stoke_g, stoke_i REAL:: vti, vtr, vts, vtg, vtc REAL, DIMENSION(kts:kte+1):: vtik, vtnik, vtrk, vtnrk, vtsk, vtgk, & vtck, vtnck REAL, DIMENSION(kts:kte):: vts_boost REAL:: Mrat, ils1, ils2, t1_vts, t2_vts, t3_vts, t4_vts, C_snow REAL:: a_, b_, loga_, A1, A2, tf REAL:: tempc, tc0, r_mvd1, r_mvd2, xkrat REAL:: xnc, xri, xni, xmi, oxmi, xrc, xrr, xnr REAL:: xsat, rate_max, sump, ratio REAL:: clap, fcd, dfcd REAL:: otemp, rvs, rvs_p, rvs_pp, gamsc, alphsc, t1_evap, t1_subl REAL:: r_frac, g_frac REAL:: Ef_rw, Ef_sw, Ef_gw, Ef_rr REAL:: Ef_ra, Ef_sa, Ef_ga REAL:: dtsave, odts, odt, odzq, hgt_agl REAL:: xslw1, ygra1, zans1, eva_factor INTEGER:: i, k, k2, n, nn, nstep, k_0, kbot, IT, iexfrq INTEGER, DIMENSION(5):: ksed1 INTEGER:: nir, nis, nig, nii, nic, niin INTEGER:: idx_tc, idx_t, idx_s, idx_g1, idx_g, idx_r1, idx_r, & idx_i1, idx_i, idx_c, idx, idx_d, idx_n, idx_in LOGICAL:: melti, no_micro LOGICAL, DIMENSION(kts:kte):: L_qc, L_qi, L_qr, L_qs, L_qg LOGICAL:: debug_flag CHARACTER*256:: mp_debug INTEGER:: nu_c !+---+ debug_flag = .false. ! if (ii.eq.901 .and. jj.eq.379) debug_flag = .true. if(debug_flag) then write(mp_debug, *) 'DEBUG INFO, mp_thompson at (i,j) ', ii, ', ', jj CALL wrf_debug(550, mp_debug) endif no_micro = .true. dtsave = dt odt = 1./dt odts = 1./dtsave iexfrq = 1 !+---+-----------------------------------------------------------------+ !.. Source/sink terms. First 2 chars: "pr" represents source/sink of !.. mass while "pn" represents source/sink of number. Next char is one !.. of "v" for water vapor, "r" for rain, "i" for cloud ice, "w" for !.. cloud water, "s" for snow, and "g" for graupel. Next chars !.. represent processes: "de" for sublimation/deposition, "ev" for !.. evaporation, "fz" for freezing, "ml" for melting, "au" for !.. autoconversion, "nu" for ice nucleation, "hm" for Hallet/Mossop !.. secondary ice production, and "c" for collection followed by the !.. character for the species being collected. ALL of these terms are !.. positive (except for deposition/sublimation terms which can switch !.. signs based on super/subsaturation) and are treated as negatives !.. where necessary in the tendency equations. !+---+-----------------------------------------------------------------+ do k = kts, kte tten(k) = 0. qvten(k) = 0. qcten(k) = 0. qiten(k) = 0. qrten(k) = 0. qsten(k) = 0. qgten(k) = 0. niten(k) = 0. nrten(k) = 0. ncten(k) = 0. nwfaten(k) = 0. nifaten(k) = 0. nc_act(k) = 0. ! ADN 2.11.15 nc_evap(k) = 0. nc_scav(k) = 0. frac_act(k) = 0. rain_auto(k) = 0. rain_coll(k) = 0. rain_evap(k) = 0. cloud_cond(k) = 0. cloud_evap(k) = 0. cloudn_cond(k) = 0. cloudn_evap(k) = 0. cloudn_auto(k) = 0. cloudn_coll(k) = 0. rainn_evap(k) = 0. rainn_auto(k) = 0. rainn_coll(k) = 0. prw_vcd(k) = 0. pnc_wcd(k) = 0. pnc_wau(k) = 0. pnc_rcw(k) = 0. pnc_scw(k) = 0. pnc_gcw(k) = 0. prv_rev(k) = 0. prr_wau(k) = 0. prr_rcw(k) = 0. prr_rcs(k) = 0. prr_rcg(k) = 0. prr_sml(k) = 0. prr_gml(k) = 0. prr_rci(k) = 0. pnr_wau(k) = 0. pnr_rcs(k) = 0. pnr_rcg(k) = 0. pnr_rci(k) = 0. pnr_sml(k) = 0. pnr_gml(k) = 0. pnr_rev(k) = 0. pnr_rcr(k) = 0. pnr_rfz(k) = 0. pri_inu(k) = 0. pni_inu(k) = 0. pri_ihm(k) = 0. pni_ihm(k) = 0. pri_wfz(k) = 0. pni_wfz(k) = 0. pri_rfz(k) = 0. pni_rfz(k) = 0. pri_ide(k) = 0. pni_ide(k) = 0. pri_rci(k) = 0. pni_rci(k) = 0. pni_sci(k) = 0. pni_iau(k) = 0. pri_iha(k) = 0. pni_iha(k) = 0. prs_iau(k) = 0. prs_sci(k) = 0. prs_rcs(k) = 0. prs_scw(k) = 0. prs_sde(k) = 0. prs_ihm(k) = 0. prs_ide(k) = 0. prg_scw(k) = 0. prg_rfz(k) = 0. prg_gde(k) = 0. prg_gcw(k) = 0. prg_rci(k) = 0. prg_rcs(k) = 0. prg_rcg(k) = 0. prg_ihm(k) = 0. pna_rca(k) = 0. pna_sca(k) = 0. pna_gca(k) = 0. pnd_rcd(k) = 0. pnd_scd(k) = 0. pnd_gcd(k) = 0. enddo #if ( WRF_CHEM == 1 ) do k = kts, kte rainprod(k) = 0. evapprod(k) = 0. enddo #endif !+---+-----------------------------------------------------------------+ !..Put column of data into local arrays. !+---+-----------------------------------------------------------------+ do k = kts, kte temp(k) = t1d(k) qv(k) = MAX(1.E-10, qv1d(k)) pres(k) = p1d(k) rho(k) = 0.622*pres(k)/(R*temp(k)*(qv(k)+0.622)) nwfa(k) = MAX(11.1E6, MIN(9999.E6, nwfa1d(k)*rho(k))) nifa(k) = MAX(naIN1*0.01, MIN(9999.E6, nifa1d(k)*rho(k))) if (qc1d(k) .gt. R1) then no_micro = .false. rc(k) = qc1d(k)*rho(k) nc(k) = MAX(2., nc1d(k)*rho(k)) L_qc(k) = .true. nu_c = MIN(15, NINT(1000.E6/nc(k)) + 2) lamc = (nc(k)*am_r*ccg(2,nu_c)*ocg1(nu_c)/rc(k))**obmr xDc = (bm_r + nu_c + 1.) / lamc if (xDc.lt. D0c) then lamc = cce(2,nu_c)/D0c elseif (xDc.gt. D0r*2.) then lamc = cce(2,nu_c)/(D0r*2.) endif nc(k) = MIN( DBLE(Nt_c_max), ccg(1,nu_c)*ocg2(nu_c)*rc(k) & / am_r*lamc**bm_r) if (.NOT. is_aerosol_aware) nc(k) = Nt_c else qc1d(k) = 0.0 nc1d(k) = 0.0 rc(k) = R1 nc(k) = 2. L_qc(k) = .false. endif if (qi1d(k) .gt. R1) then no_micro = .false. ri(k) = qi1d(k)*rho(k) ni(k) = MAX(R2, ni1d(k)*rho(k)) L_qi(k) = .true. lami = (am_i*cig(2)*oig1*ni(k)/ri(k))**obmi ilami = 1./lami xDi = (bm_i + mu_i + 1.) * ilami if (xDi.lt. 20.E-6) then lami = cie(2)/20.E-6 ni(k) = MIN(499.D3, cig(1)*oig2*ri(k)/am_i*lami**bm_i) elseif (xDi.gt. 300.E-6) then lami = cie(2)/300.E-6 ni(k) = cig(1)*oig2*ri(k)/am_i*lami**bm_i endif else qi1d(k) = 0.0 ni1d(k) = 0.0 ri(k) = R1 ni(k) = R2 L_qi(k) = .false. endif if (qr1d(k) .gt. R1) then no_micro = .false. rr(k) = qr1d(k)*rho(k) nr(k) = MAX(R2, nr1d(k)*rho(k)) L_qr(k) = .true. lamr = (am_r*crg(3)*org2*nr(k)/rr(k))**obmr mvd_r(k) = (3.0 + mu_r + 0.672) / lamr if (mvd_r(k) .gt. 2.5E-3) then mvd_r(k) = 2.5E-3 lamr = (3.0 + mu_r + 0.672) / mvd_r(k) nr(k) = crg(2)*org3*rr(k)*lamr**bm_r / am_r elseif (mvd_r(k) .lt. D0r*0.75) then mvd_r(k) = D0r*0.75 lamr = (3.0 + mu_r + 0.672) / mvd_r(k) nr(k) = crg(2)*org3*rr(k)*lamr**bm_r / am_r endif else qr1d(k) = 0.0 nr1d(k) = 0.0 rr(k) = R1 nr(k) = R2 L_qr(k) = .false. endif if (qs1d(k) .gt. R1) then no_micro = .false. rs(k) = qs1d(k)*rho(k) L_qs(k) = .true. else qs1d(k) = 0.0 rs(k) = R1 L_qs(k) = .false. endif if (qg1d(k) .gt. R1) then no_micro = .false. rg(k) = qg1d(k)*rho(k) L_qg(k) = .true. else qg1d(k) = 0.0 rg(k) = R1 L_qg(k) = .false. endif enddo !+---+-----------------------------------------------------------------+ ! if (debug_flag) then ! write(mp_debug,*) 'DEBUG-VERBOSE at (i,j) ', ii, ', ', jj ! CALL wrf_debug(550, mp_debug) ! do k = kts, kte ! write(mp_debug, '(a,i3,f8.2,1x,f7.2,1x, 11(1x,e13.6))') & ! & 'VERBOSE: ', k, pres(k)*0.01, temp(k)-273.15, qv(k), rc(k), rr(k), ri(k), rs(k), rg(k), nc(k), nr(k), ni(k), nwfa(k), nifa(k) ! CALL wrf_debug(550, mp_debug) ! enddo ! endif !+---+-----------------------------------------------------------------+ !+---+-----------------------------------------------------------------+ !..Derive various thermodynamic variables frequently used. !.. Saturation vapor pressure (mixing ratio) over liquid/ice comes from !.. Flatau et al. 1992; enthalpy (latent heat) of vaporization from !.. Bohren & Albrecht 1998; others from Pruppacher & Klett 1978. !+---+-----------------------------------------------------------------+ do k = kts, kte tempc = temp(k) - 273.15 rhof(k) = SQRT(RHO_NOT/rho(k)) rhof2(k) = SQRT(rhof(k)) qvs(k) = rslf(pres(k), temp(k)) delQvs(k) = MAX(0.0, rslf(pres(k), 273.15)-qv(k)) if (tempc .le. 0.0) then qvsi(k) = rsif(pres(k), temp(k)) else qvsi(k) = qvs(k) endif satw(k) = qv(k)/qvs(k) sati(k) = qv(k)/qvsi(k) ssatw(k) = satw(k) - 1. ssati(k) = sati(k) - 1. if (abs(ssatw(k)).lt. eps) ssatw(k) = 0.0 if (abs(ssati(k)).lt. eps) ssati(k) = 0.0 if (no_micro .and. ssati(k).gt. 0.0) no_micro = .false. diffu(k) = 2.11E-5*(temp(k)/273.15)**1.94 * (101325./pres(k)) if (tempc .ge. 0.0) then visco(k) = (1.718+0.0049*tempc)*1.0E-5 else visco(k) = (1.718+0.0049*tempc-1.2E-5*tempc*tempc)*1.0E-5 endif ocp(k) = 1./(Cp*(1.+0.887*qv(k))) vsc2(k) = SQRT(rho(k)/visco(k)) lvap(k) = lvap0 + (2106.0 - 4218.0)*tempc tcond(k) = (5.69 + 0.0168*tempc)*1.0E-5 * 418.936 enddo !+---+-----------------------------------------------------------------+ !..If no existing hydrometeor species and no chance to initiate ice or !.. condense cloud water, just exit quickly! !+---+-----------------------------------------------------------------+ if (no_micro) return !+---+-----------------------------------------------------------------+ !..Calculate y-intercept, slope, and useful moments for snow. !+---+-----------------------------------------------------------------+ if (.not. iiwarm) then do k = kts, kte if (.not. L_qs(k)) CYCLE tc0 = MIN(-0.1, temp(k)-273.15) smob(k) = rs(k)*oams !..All other moments based on reference, 2nd moment. If bm_s.ne.2, !.. then we must compute actual 2nd moment and use as reference. if (bm_s.gt.(2.0-1.e-3) .and. bm_s.lt.(2.0+1.e-3)) then smo2(k) = smob(k) else loga_ = sa(1) + sa(2)*tc0 + sa(3)*bm_s & + sa(4)*tc0*bm_s + sa(5)*tc0*tc0 & + sa(6)*bm_s*bm_s + sa(7)*tc0*tc0*bm_s & + sa(8)*tc0*bm_s*bm_s + sa(9)*tc0*tc0*tc0 & + sa(10)*bm_s*bm_s*bm_s a_ = 10.0**loga_ b_ = sb(1) + sb(2)*tc0 + sb(3)*bm_s & + sb(4)*tc0*bm_s + sb(5)*tc0*tc0 & + sb(6)*bm_s*bm_s + sb(7)*tc0*tc0*bm_s & + sb(8)*tc0*bm_s*bm_s + sb(9)*tc0*tc0*tc0 & + sb(10)*bm_s*bm_s*bm_s smo2(k) = (smob(k)/a_)**(1./b_) endif !..Calculate 0th moment. Represents snow number concentration. loga_ = sa(1) + sa(2)*tc0 + sa(5)*tc0*tc0 + sa(9)*tc0*tc0*tc0 a_ = 10.0**loga_ b_ = sb(1) + sb(2)*tc0 + sb(5)*tc0*tc0 + sb(9)*tc0*tc0*tc0 smo0(k) = a_ * smo2(k)**b_ !..Calculate 1st moment. Useful for depositional growth and melting. loga_ = sa(1) + sa(2)*tc0 + sa(3) & + sa(4)*tc0 + sa(5)*tc0*tc0 & + sa(6) + sa(7)*tc0*tc0 & + sa(8)*tc0 + sa(9)*tc0*tc0*tc0 & + sa(10) a_ = 10.0**loga_ b_ = sb(1)+ sb(2)*tc0 + sb(3) + sb(4)*tc0 & + sb(5)*tc0*tc0 + sb(6) & + sb(7)*tc0*tc0 + sb(8)*tc0 & + sb(9)*tc0*tc0*tc0 + sb(10) smo1(k) = a_ * smo2(k)**b_ !..Calculate bm_s+1 (th) moment. Useful for diameter calcs. loga_ = sa(1) + sa(2)*tc0 + sa(3)*cse(1) & + sa(4)*tc0*cse(1) + sa(5)*tc0*tc0 & + sa(6)*cse(1)*cse(1) + sa(7)*tc0*tc0*cse(1) & + sa(8)*tc0*cse(1)*cse(1) + sa(9)*tc0*tc0*tc0 & + sa(10)*cse(1)*cse(1)*cse(1) a_ = 10.0**loga_ b_ = sb(1)+ sb(2)*tc0 + sb(3)*cse(1) + sb(4)*tc0*cse(1) & + sb(5)*tc0*tc0 + sb(6)*cse(1)*cse(1) & + sb(7)*tc0*tc0*cse(1) + sb(8)*tc0*cse(1)*cse(1) & + sb(9)*tc0*tc0*tc0 + sb(10)*cse(1)*cse(1)*cse(1) smoc(k) = a_ * smo2(k)**b_ !..Calculate bv_s+2 (th) moment. Useful for riming. loga_ = sa(1) + sa(2)*tc0 + sa(3)*cse(13) & + sa(4)*tc0*cse(13) + sa(5)*tc0*tc0 & + sa(6)*cse(13)*cse(13) + sa(7)*tc0*tc0*cse(13) & + sa(8)*tc0*cse(13)*cse(13) + sa(9)*tc0*tc0*tc0 & + sa(10)*cse(13)*cse(13)*cse(13) a_ = 10.0**loga_ b_ = sb(1)+ sb(2)*tc0 + sb(3)*cse(13) + sb(4)*tc0*cse(13) & + sb(5)*tc0*tc0 + sb(6)*cse(13)*cse(13) & + sb(7)*tc0*tc0*cse(13) + sb(8)*tc0*cse(13)*cse(13) & + sb(9)*tc0*tc0*tc0 + sb(10)*cse(13)*cse(13)*cse(13) smoe(k) = a_ * smo2(k)**b_ !..Calculate 1+(bv_s+1)/2 (th) moment. Useful for depositional growth. loga_ = sa(1) + sa(2)*tc0 + sa(3)*cse(16) & + sa(4)*tc0*cse(16) + sa(5)*tc0*tc0 & + sa(6)*cse(16)*cse(16) + sa(7)*tc0*tc0*cse(16) & + sa(8)*tc0*cse(16)*cse(16) + sa(9)*tc0*tc0*tc0 & + sa(10)*cse(16)*cse(16)*cse(16) a_ = 10.0**loga_ b_ = sb(1)+ sb(2)*tc0 + sb(3)*cse(16) + sb(4)*tc0*cse(16) & + sb(5)*tc0*tc0 + sb(6)*cse(16)*cse(16) & + sb(7)*tc0*tc0*cse(16) + sb(8)*tc0*cse(16)*cse(16) & + sb(9)*tc0*tc0*tc0 + sb(10)*cse(16)*cse(16)*cse(16) smof(k) = a_ * smo2(k)**b_ enddo !+---+-----------------------------------------------------------------+ !..Calculate y-intercept, slope values for graupel. !+---+-----------------------------------------------------------------+ N0_min = gonv_max do k = kte, kts, -1 if (temp(k).lt.270.65 .and. L_qr(k) .and. mvd_r(k).gt.100.E-6) then xslw1 = 4.01 + alog10(mvd_r(k)) else xslw1 = 0.01 endif ygra1 = 4.31 + alog10(max(5.E-5, rg(k))) zans1 = 3.1 + (100./(300.*xslw1*ygra1/(10./xslw1+1.+0.25*ygra1)+30.+10.*ygra1)) N0_exp = 10.**(zans1) N0_exp = MAX(DBLE(gonv_min), MIN(N0_exp, DBLE(gonv_max))) N0_min = MIN(N0_exp, N0_min) N0_exp = N0_min lam_exp = (N0_exp*am_g*cgg(1)/rg(k))**oge1 lamg = lam_exp * (cgg(3)*ogg2*ogg1)**obmg ilamg(k) = 1./lamg N0_g(k) = N0_exp/(cgg(2)*lam_exp) * lamg**cge(2) enddo endif !+---+-----------------------------------------------------------------+ !..Calculate y-intercept, slope values for rain. !+---+-----------------------------------------------------------------+ do k = kte, kts, -1 lamr = (am_r*crg(3)*org2*nr(k)/rr(k))**obmr ilamr(k) = 1./lamr mvd_r(k) = (3.0 + mu_r + 0.672) / lamr N0_r(k) = nr(k)*org2*lamr**cre(2) enddo !+---+-----------------------------------------------------------------+ !..Compute warm-rain process terms (except evap done later). !+---+-----------------------------------------------------------------+ do k = kts, kte !..Rain self-collection follows Seifert, 1994 and drop break-up !.. follows Verlinde and Cotton, 1993. RAIN2M if (L_qr(k) .and. mvd_r(k).gt. D0r) then !-GT Ef_rr = 1.0 !-GT if (mvd_r(k) .gt. 1500.0E-6) then Ef_rr = 2.0 - EXP(2300.0*(mvd_r(k)-1600.0E-6)) !-GT endif pnr_rcr(k) = Ef_rr * 0.5*nr(k)*rr(k) endif mvd_c(k) = D0c if (L_qc(k)) then nu_c = MIN(15, NINT(1000.E6/nc(k)) + 2) xDc = MAX(D0c*1.E6, ((rc(k)/(am_r*nc(k)))**obmr) * 1.E6) lamc = (nc(k)*am_r* ccg(2,nu_c) * ocg1(nu_c) / rc(k))**obmr mvd_c(k) = (3.0+nu_c+0.672) / lamc endif !..Autoconversion follows Berry & Reinhardt (1974) with characteristic !.. diameters correctly computed from gamma distrib of cloud droplets. if (rc(k).gt. 0.01e-3) then Dc_g = ((ccg(3,nu_c)*ocg2(nu_c))**obmr / lamc) * 1.E6 Dc_b = (xDc*xDc*xDc*Dc_g*Dc_g*Dc_g - xDc*xDc*xDc*xDc*xDc*xDc) & **(1./6.) zeta1 = 0.5*((6.25E-6*xDc*Dc_b*Dc_b*Dc_b - 0.4) & + abs(6.25E-6*xDc*Dc_b*Dc_b*Dc_b - 0.4)) zeta = 0.027*rc(k)*zeta1 taud = 0.5*((0.5*Dc_b - 7.5) + abs(0.5*Dc_b - 7.5)) + R1 tau = 3.72/(rc(k)*taud) prr_wau(k) = zeta/tau prr_wau(k) = MIN(DBLE(rc(k)*odts), prr_wau(k)) pnr_wau(k) = prr_wau(k) / (am_r*nu_c*D0r*D0r*D0r) ! RAIN2M pnc_wau(k) = MIN(DBLE(nc(k)*odts), prr_wau(k) & / (am_r*mvd_c(k)*mvd_c(k)*mvd_c(k))) ! Qc2M endif !..Rain collecting cloud water. In CE, assume Dc<1). Either way, only bother to do sedimentation below !.. 1st level that contains any sedimenting particles (k=ksed1 on down). !.. New in v3.0+ is computing separate for rain, ice, snow, and !.. graupel species thus making code faster with credit to J. Schmidt. !+---+-----------------------------------------------------------------+ nstep = 0 onstep(:) = 1.0 ksed1(:) = 1 do k = kte+1, kts, -1 vtrk(k) = 0. vtnrk(k) = 0. vtik(k) = 0. vtnik(k) = 0. vtsk(k) = 0. vtgk(k) = 0. vtck(k) = 0. vtnck(k) = 0. enddo do k = kte, kts, -1 vtr = 0. rhof(k) = SQRT(RHO_NOT/rho(k)) if (rr(k).gt. R1) then lamr = (am_r*crg(3)*org2*nr(k)/rr(k))**obmr vtr = rhof(k)*av_r*crg(6)*org3 * lamr**cre(3) & *((lamr+fv_r)**(-cre(6))) vtrk(k) = vtr ! First below is technically correct: ! vtr = rhof(k)*av_r*crg(5)*org2 * lamr**cre(2) & ! *((lamr+fv_r)**(-cre(5))) ! Test: make number fall faster (but still slower than mass) ! Goal: less prominent size sorting vtr = rhof(k)*av_r*crg(7)/crg(12) * lamr**cre(12) & *((lamr+fv_r)**(-cre(7))) vtnrk(k) = vtr else vtrk(k) = vtrk(k+1) vtnrk(k) = vtnrk(k+1) endif if (MAX(vtrk(k),vtnrk(k)) .gt. 1.E-3) then ksed1(1) = MAX(ksed1(1), k) delta_tp = dzq(k)/(MAX(vtrk(k),vtnrk(k))) nstep = MAX(nstep, INT(DT/delta_tp + 1.)) endif enddo if (ksed1(1) .eq. kte) ksed1(1) = kte-1 if (nstep .gt. 0) onstep(1) = 1./REAL(nstep) !+---+-----------------------------------------------------------------+ hgt_agl = 0. do k = kts, kte-1 if (rc(k) .gt. R2) ksed1(5) = k hgt_agl = hgt_agl + dzq(k) if (hgt_agl .gt. 500.0) goto 151 enddo 151 continue do k = ksed1(5), kts, -1 vtc = 0. if (rc(k) .gt. R1 .and. w1d(k) .lt. 1.E-1) then nu_c = MIN(15, NINT(1000.E6/nc(k)) + 2) lamc = (nc(k)*am_r*ccg(2,nu_c)*ocg1(nu_c)/rc(k))**obmr ilamc = 1./lamc vtc = rhof(k)*av_c*ccg(5,nu_c)*ocg2(nu_c) * ilamc**bv_c vtck(k) = vtc vtc = rhof(k)*av_c*ccg(4,nu_c)*ocg1(nu_c) * ilamc**bv_c vtnck(k) = vtc endif enddo !+---+-----------------------------------------------------------------+ if (.not. iiwarm) then nstep = 0 do k = kte, kts, -1 vti = 0. if (ri(k).gt. R1) then lami = (am_i*cig(2)*oig1*ni(k)/ri(k))**obmi ilami = 1./lami vti = rhof(k)*av_i*cig(3)*oig2 * ilami**bv_i vtik(k) = vti ! First below is technically correct: ! vti = rhof(k)*av_i*cig(4)*oig1 * ilami**bv_i ! Goal: less prominent size sorting vti = rhof(k)*av_i*cig(6)/cig(7) * ilami**bv_i vtnik(k) = vti else vtik(k) = vtik(k+1) vtnik(k) = vtnik(k+1) endif if (vtik(k) .gt. 1.E-3) then ksed1(2) = MAX(ksed1(2), k) delta_tp = dzq(k)/vtik(k) nstep = MAX(nstep, INT(DT/delta_tp + 1.)) endif enddo if (ksed1(2) .eq. kte) ksed1(2) = kte-1 if (nstep .gt. 0) onstep(2) = 1./REAL(nstep) !+---+-----------------------------------------------------------------+ nstep = 0 do k = kte, kts, -1 vts = 0. if (rs(k).gt. R1) then xDs = smoc(k) / smob(k) Mrat = 1./xDs ils1 = 1./(Mrat*Lam0 + fv_s) ils2 = 1./(Mrat*Lam1 + fv_s) t1_vts = Kap0*csg(4)*ils1**cse(4) t2_vts = Kap1*Mrat**mu_s*csg(10)*ils2**cse(10) ils1 = 1./(Mrat*Lam0) ils2 = 1./(Mrat*Lam1) t3_vts = Kap0*csg(1)*ils1**cse(1) t4_vts = Kap1*Mrat**mu_s*csg(7)*ils2**cse(7) vts = rhof(k)*av_s * (t1_vts+t2_vts)/(t3_vts+t4_vts) if (temp(k).gt. T_0) then vtsk(k) = MAX(vts*vts_boost(k), vtrk(k)) else vtsk(k) = vts*vts_boost(k) endif else vtsk(k) = vtsk(k+1) endif if (vtsk(k) .gt. 1.E-3) then ksed1(3) = MAX(ksed1(3), k) delta_tp = dzq(k)/vtsk(k) nstep = MAX(nstep, INT(DT/delta_tp + 1.)) endif enddo if (ksed1(3) .eq. kte) ksed1(3) = kte-1 if (nstep .gt. 0) onstep(3) = 1./REAL(nstep) !+---+-----------------------------------------------------------------+ nstep = 0 do k = kte, kts, -1 vtg = 0. if (rg(k).gt. R1) then vtg = rhof(k)*av_g*cgg(6)*ogg3 * ilamg(k)**bv_g if (temp(k).gt. T_0) then vtgk(k) = MAX(vtg, vtrk(k)) else vtgk(k) = vtg endif else vtgk(k) = vtgk(k+1) endif if (vtgk(k) .gt. 1.E-3) then ksed1(4) = MAX(ksed1(4), k) delta_tp = dzq(k)/vtgk(k) nstep = MAX(nstep, INT(DT/delta_tp + 1.)) endif enddo if (ksed1(4) .eq. kte) ksed1(4) = kte-1 if (nstep .gt. 0) onstep(4) = 1./REAL(nstep) endif !+---+-----------------------------------------------------------------+ !..Sedimentation of mixing ratio is the integral of v(D)*m(D)*N(D)*dD, !.. whereas neglect m(D) term for number concentration. Therefore, !.. cloud ice has proper differential sedimentation. !.. New in v3.0+ is computing separate for rain, ice, snow, and !.. graupel species thus making code faster with credit to J. Schmidt. !.. Bug fix, 2013Nov01 to tendencies using rho(k+1) correction thanks to !.. Eric Skyllingstad. !+---+-----------------------------------------------------------------+ nstep = NINT(1./onstep(1)) do n = 1, nstep do k = kte, kts, -1 sed_r(k) = vtrk(k)*rr(k) sed_n(k) = vtnrk(k)*nr(k) enddo k = kte odzq = 1./dzq(k) orho = 1./rho(k) qrten(k) = qrten(k) - sed_r(k)*odzq*onstep(1)*orho nrten(k) = nrten(k) - sed_n(k)*odzq*onstep(1)*orho rr(k) = MAX(R1, rr(k) - sed_r(k)*odzq*DT*onstep(1)) nr(k) = MAX(R2, nr(k) - sed_n(k)*odzq*DT*onstep(1)) do k = ksed1(1), kts, -1 odzq = 1./dzq(k) orho = 1./rho(k) qrten(k) = qrten(k) + (sed_r(k+1)-sed_r(k)) & *odzq*onstep(1)*orho nrten(k) = nrten(k) + (sed_n(k+1)-sed_n(k)) & *odzq*onstep(1)*orho rr(k) = MAX(R1, rr(k) + (sed_r(k+1)-sed_r(k)) & *odzq*DT*onstep(1)) nr(k) = MAX(R2, nr(k) + (sed_n(k+1)-sed_n(k)) & *odzq*DT*onstep(1)) enddo if (rr(kts).gt.R1*10.) & pptrain = pptrain + sed_r(kts)*DT*onstep(1) enddo !+---+-----------------------------------------------------------------+ do k = kte, kts, -1 sed_c(k) = vtck(k)*rc(k) sed_n(k) = vtnck(k)*nc(k) enddo do k = ksed1(5), kts, -1 odzq = 1./dzq(k) orho = 1./rho(k) qcten(k) = qcten(k) + (sed_c(k+1)-sed_c(k)) *odzq*orho ncten(k) = ncten(k) + (sed_n(k+1)-sed_n(k)) *odzq*orho rc(k) = MAX(R1, rc(k) + (sed_c(k+1)-sed_c(k)) *odzq*DT) nc(k) = MAX(10., nc(k) + (sed_n(k+1)-sed_n(k)) *odzq*DT) enddo !+---+-----------------------------------------------------------------+ nstep = NINT(1./onstep(2)) do n = 1, nstep do k = kte, kts, -1 sed_i(k) = vtik(k)*ri(k) sed_n(k) = vtnik(k)*ni(k) enddo k = kte odzq = 1./dzq(k) orho = 1./rho(k) qiten(k) = qiten(k) - sed_i(k)*odzq*onstep(2)*orho niten(k) = niten(k) - sed_n(k)*odzq*onstep(2)*orho ri(k) = MAX(R1, ri(k) - sed_i(k)*odzq*DT*onstep(2)) ni(k) = MAX(R2, ni(k) - sed_n(k)*odzq*DT*onstep(2)) do k = ksed1(2), kts, -1 odzq = 1./dzq(k) orho = 1./rho(k) qiten(k) = qiten(k) + (sed_i(k+1)-sed_i(k)) & *odzq*onstep(2)*orho niten(k) = niten(k) + (sed_n(k+1)-sed_n(k)) & *odzq*onstep(2)*orho ri(k) = MAX(R1, ri(k) + (sed_i(k+1)-sed_i(k)) & *odzq*DT*onstep(2)) ni(k) = MAX(R2, ni(k) + (sed_n(k+1)-sed_n(k)) & *odzq*DT*onstep(2)) enddo if (ri(kts).gt.R1*10.) & pptice = pptice + sed_i(kts)*DT*onstep(2) enddo !+---+-----------------------------------------------------------------+ nstep = NINT(1./onstep(3)) do n = 1, nstep do k = kte, kts, -1 sed_s(k) = vtsk(k)*rs(k) enddo k = kte odzq = 1./dzq(k) orho = 1./rho(k) qsten(k) = qsten(k) - sed_s(k)*odzq*onstep(3)*orho rs(k) = MAX(R1, rs(k) - sed_s(k)*odzq*DT*onstep(3)) do k = ksed1(3), kts, -1 odzq = 1./dzq(k) orho = 1./rho(k) qsten(k) = qsten(k) + (sed_s(k+1)-sed_s(k)) & *odzq*onstep(3)*orho rs(k) = MAX(R1, rs(k) + (sed_s(k+1)-sed_s(k)) & *odzq*DT*onstep(3)) enddo if (rs(kts).gt.R1*10.) & pptsnow = pptsnow + sed_s(kts)*DT*onstep(3) enddo !+---+-----------------------------------------------------------------+ nstep = NINT(1./onstep(4)) do n = 1, nstep do k = kte, kts, -1 sed_g(k) = vtgk(k)*rg(k) enddo k = kte odzq = 1./dzq(k) orho = 1./rho(k) qgten(k) = qgten(k) - sed_g(k)*odzq*onstep(4)*orho rg(k) = MAX(R1, rg(k) - sed_g(k)*odzq*DT*onstep(4)) do k = ksed1(4), kts, -1 odzq = 1./dzq(k) orho = 1./rho(k) qgten(k) = qgten(k) + (sed_g(k+1)-sed_g(k)) & *odzq*onstep(4)*orho rg(k) = MAX(R1, rg(k) + (sed_g(k+1)-sed_g(k)) & *odzq*DT*onstep(4)) enddo if (rg(kts).gt.R1*10.) & pptgraul = pptgraul + sed_g(kts)*DT*onstep(4) enddo !+---+-----------------------------------------------------------------+ !.. Instantly melt any cloud ice into cloud water if above 0C and !.. instantly freeze any cloud water found below HGFR. !+---+-----------------------------------------------------------------+ if (.not. iiwarm) then do k = kts, kte xri = MAX(0.0, qi1d(k) + qiten(k)*DT) if ( (temp(k).gt. T_0) .and. (xri.gt. 0.0) ) then qcten(k) = qcten(k) + xri*odt ncten(k) = ncten(k) + ni1d(k)*odt qiten(k) = qiten(k) - xri*odt niten(k) = -ni1d(k)*odt tten(k) = tten(k) - lfus*ocp(k)*xri*odt*(1-IFDRY) endif xrc = MAX(0.0, qc1d(k) + qcten(k)*DT) if ( (temp(k).lt. HGFR) .and. (xrc.gt. 0.0) ) then lfus2 = lsub - lvap(k) xnc = nc1d(k) + ncten(k)*DT qiten(k) = qiten(k) + xrc*odt niten(k) = niten(k) + xnc*odt qcten(k) = qcten(k) - xrc*odt ncten(k) = ncten(k) - xnc*odt tten(k) = tten(k) + lfus2*ocp(k)*xrc*odt*(1-IFDRY) endif enddo endif !+---+-----------------------------------------------------------------+ !.. All tendencies computed, apply and pass back final values to parent. !+---+-----------------------------------------------------------------+ do k = kts, kte t1d(k) = t1d(k) + tten(k)*DT qv1d(k) = MAX(1.E-10, qv1d(k) + qvten(k)*DT) qc1d(k) = qc1d(k) + qcten(k)*DT nc1d(k) = MAX(2./rho(k), nc1d(k) + ncten(k)*DT) nwfa1d(k) = MAX(11.1E6/rho(k), MIN(9999.E6/rho(k), & (nwfa1d(k)+nwfaten(k)*DT))) nifa1d(k) = MAX(naIN1*0.01, MIN(9999.E6/rho(k), & (nifa1d(k)+nifaten(k)*DT))) if (qc1d(k) .le. R1) then qc1d(k) = 0.0 nc1d(k) = 0.0 else nu_c = MIN(15, NINT(1000.E6/(nc1d(k)*rho(k))) + 2) lamc = (am_r*ccg(2,nu_c)*ocg1(nu_c)*nc1d(k)/qc1d(k))**obmr xDc = (bm_r + nu_c + 1.) / lamc if (xDc.lt. D0c) then lamc = cce(2,nu_c)/D0c elseif (xDc.gt. D0r*2.) then lamc = cce(2,nu_c)/(D0r*2.) endif nc1d(k) = MIN(ccg(1,nu_c)*ocg2(nu_c)*qc1d(k)/am_r*lamc**bm_r,& DBLE(Nt_c_max)/rho(k)) endif qi1d(k) = qi1d(k) + qiten(k)*DT ni1d(k) = MAX(R2/rho(k), ni1d(k) + niten(k)*DT) if (qi1d(k) .le. R1) then qi1d(k) = 0.0 ni1d(k) = 0.0 else lami = (am_i*cig(2)*oig1*ni1d(k)/qi1d(k))**obmi ilami = 1./lami xDi = (bm_i + mu_i + 1.) * ilami if (xDi.lt. 20.E-6) then lami = cie(2)/20.E-6 elseif (xDi.gt. 300.E-6) then lami = cie(2)/300.E-6 endif ni1d(k) = MIN(cig(1)*oig2*qi1d(k)/am_i*lami**bm_i, & 499.D3/rho(k)) endif qr1d(k) = qr1d(k) + qrten(k)*DT nr1d(k) = MAX(R2/rho(k), nr1d(k) + nrten(k)*DT) if (qr1d(k) .le. R1) then qr1d(k) = 0.0 nr1d(k) = 0.0 else lamr = (am_r*crg(3)*org2*nr1d(k)/qr1d(k))**obmr mvd_r(k) = (3.0 + mu_r + 0.672) / lamr if (mvd_r(k) .gt. 2.5E-3) then mvd_r(k) = 2.5E-3 elseif (mvd_r(k) .lt. D0r*0.75) then mvd_r(k) = D0r*0.75 endif lamr = (3.0 + mu_r + 0.672) / mvd_r(k) nr1d(k) = crg(2)*org3*qr1d(k)*lamr**bm_r / am_r endif qs1d(k) = qs1d(k) + qsten(k)*DT if (qs1d(k) .le. R1) qs1d(k) = 0.0 qg1d(k) = qg1d(k) + qgten(k)*DT if (qg1d(k) .le. R1) qg1d(k) = 0.0 enddo end subroutine mp_thompson !+---+-----------------------------------------------------------------+ !ctrlL !+---+-----------------------------------------------------------------+ !..Creation of the lookup tables and support functions found below here. !+---+-----------------------------------------------------------------+ !..Rain collecting graupel (and inverse). Explicit CE integration. !+---+-----------------------------------------------------------------+ subroutine qr_acr_qg implicit none !..Local variables INTEGER:: i, j, k, m, n, n2 INTEGER:: km, km_s, km_e DOUBLE PRECISION, DIMENSION(nbg):: vg, N_g DOUBLE PRECISION, DIMENSION(nbr):: vr, N_r DOUBLE PRECISION:: N0_r, N0_g, lam_exp, lamg, lamr DOUBLE PRECISION:: massg, massr, dvg, dvr, t1, t2, z1, z2, y1, y2 !+---+ do n2 = 1, nbr ! vr(n2) = av_r*Dr(n2)**bv_r * DEXP(-fv_r*Dr(n2)) vr(n2) = -0.1021 + 4.932E3*Dr(n2) - 0.9551E6*Dr(n2)*Dr(n2) & + 0.07934E9*Dr(n2)*Dr(n2)*Dr(n2) & - 0.002362E12*Dr(n2)*Dr(n2)*Dr(n2)*Dr(n2) enddo do n = 1, nbg vg(n) = av_g*Dg(n)**bv_g enddo !..Note values returned from wrf_dm_decomp1d are zero-based, add 1 for !.. fortran indices. J. Michalakes, 2009Oct30. #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) CALL wrf_dm_decomp1d ( ntb_r*ntb_r1, km_s, km_e ) #else km_s = 0 km_e = ntb_r*ntb_r1 - 1 #endif do km = km_s, km_e m = km / ntb_r1 + 1 k = mod( km , ntb_r1 ) + 1 lam_exp = (N0r_exp(k)*am_r*crg(1)/r_r(m))**ore1 lamr = lam_exp * (crg(3)*org2*org1)**obmr N0_r = N0r_exp(k)/(crg(2)*lam_exp) * lamr**cre(2) do n2 = 1, nbr N_r(n2) = N0_r*Dr(n2)**mu_r *DEXP(-lamr*Dr(n2))*dtr(n2) enddo do j = 1, ntb_g do i = 1, ntb_g1 lam_exp = (N0g_exp(i)*am_g*cgg(1)/r_g(j))**oge1 lamg = lam_exp * (cgg(3)*ogg2*ogg1)**obmg N0_g = N0g_exp(i)/(cgg(2)*lam_exp) * lamg**cge(2) do n = 1, nbg N_g(n) = N0_g*Dg(n)**mu_g * DEXP(-lamg*Dg(n))*dtg(n) enddo t1 = 0.0d0 t2 = 0.0d0 z1 = 0.0d0 z2 = 0.0d0 y1 = 0.0d0 y2 = 0.0d0 do n2 = 1, nbr massr = am_r * Dr(n2)**bm_r do n = 1, nbg massg = am_g * Dg(n)**bm_g dvg = 0.5d0*((vr(n2) - vg(n)) + DABS(vr(n2)-vg(n))) dvr = 0.5d0*((vg(n) - vr(n2)) + DABS(vg(n)-vr(n2))) t1 = t1+ PI*.25*Ef_rg*(Dg(n)+Dr(n2))*(Dg(n)+Dr(n2)) & *dvg*massg * N_g(n)* N_r(n2) z1 = z1+ PI*.25*Ef_rg*(Dg(n)+Dr(n2))*(Dg(n)+Dr(n2)) & *dvg*massr * N_g(n)* N_r(n2) y1 = y1+ PI*.25*Ef_rg*(Dg(n)+Dr(n2))*(Dg(n)+Dr(n2)) & *dvg * N_g(n)* N_r(n2) t2 = t2+ PI*.25*Ef_rg*(Dg(n)+Dr(n2))*(Dg(n)+Dr(n2)) & *dvr*massr * N_g(n)* N_r(n2) y2 = y2+ PI*.25*Ef_rg*(Dg(n)+Dr(n2))*(Dg(n)+Dr(n2)) & *dvr * N_g(n)* N_r(n2) z2 = z2+ PI*.25*Ef_rg*(Dg(n)+Dr(n2))*(Dg(n)+Dr(n2)) & *dvr*massg * N_g(n)* N_r(n2) enddo 97 continue enddo tcg_racg(i,j,k,m) = t1 tmr_racg(i,j,k,m) = DMIN1(z1, r_r(m)*1.0d0) tcr_gacr(i,j,k,m) = t2 tmg_gacr(i,j,k,m) = z2 tnr_racg(i,j,k,m) = y1 tnr_gacr(i,j,k,m) = y2 enddo enddo enddo !..Note wrf_dm_gatherv expects zero-based km_s, km_e (J. Michalakes, 2009Oct30). #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) CALL wrf_dm_gatherv(tcg_racg, ntb_g*ntb_g1, km_s, km_e, R8SIZE) CALL wrf_dm_gatherv(tmr_racg, ntb_g*ntb_g1, km_s, km_e, R8SIZE) CALL wrf_dm_gatherv(tcr_gacr, ntb_g*ntb_g1, km_s, km_e, R8SIZE) CALL wrf_dm_gatherv(tmg_gacr, ntb_g*ntb_g1, km_s, km_e, R8SIZE) CALL wrf_dm_gatherv(tnr_racg, ntb_g*ntb_g1, km_s, km_e, R8SIZE) CALL wrf_dm_gatherv(tnr_gacr, ntb_g*ntb_g1, km_s, km_e, R8SIZE) #endif end subroutine qr_acr_qg !+---+-----------------------------------------------------------------+ !ctrlL !+---+-----------------------------------------------------------------+ !..Rain collecting snow (and inverse). Explicit CE integration. !+---+-----------------------------------------------------------------+ subroutine qr_acr_qs implicit none !..Local variables INTEGER:: i, j, k, m, n, n2 INTEGER:: km, km_s, km_e DOUBLE PRECISION, DIMENSION(nbr):: vr, D1, N_r DOUBLE PRECISION, DIMENSION(nbs):: vs, N_s DOUBLE PRECISION:: loga_, a_, b_, second, M0, M2, M3, Mrat, oM3 DOUBLE PRECISION:: N0_r, lam_exp, lamr, slam1, slam2 DOUBLE PRECISION:: dvs, dvr, masss, massr DOUBLE PRECISION:: t1, t2, t3, t4, z1, z2, z3, z4 DOUBLE PRECISION:: y1, y2, y3, y4 !+---+ do n2 = 1, nbr ! vr(n2) = av_r*Dr(n2)**bv_r * DEXP(-fv_r*Dr(n2)) vr(n2) = -0.1021 + 4.932E3*Dr(n2) - 0.9551E6*Dr(n2)*Dr(n2) & + 0.07934E9*Dr(n2)*Dr(n2)*Dr(n2) & - 0.002362E12*Dr(n2)*Dr(n2)*Dr(n2)*Dr(n2) D1(n2) = (vr(n2)/av_s)**(1./bv_s) enddo do n = 1, nbs vs(n) = 1.5*av_s*Ds(n)**bv_s * DEXP(-fv_s*Ds(n)) enddo !..Note values returned from wrf_dm_decomp1d are zero-based, add 1 for !.. fortran indices. J. Michalakes, 2009Oct30. #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) CALL wrf_dm_decomp1d ( ntb_r*ntb_r1, km_s, km_e ) #else km_s = 0 km_e = ntb_r*ntb_r1 - 1 #endif do km = km_s, km_e m = km / ntb_r1 + 1 k = mod( km , ntb_r1 ) + 1 lam_exp = (N0r_exp(k)*am_r*crg(1)/r_r(m))**ore1 lamr = lam_exp * (crg(3)*org2*org1)**obmr N0_r = N0r_exp(k)/(crg(2)*lam_exp) * lamr**cre(2) do n2 = 1, nbr N_r(n2) = N0_r*Dr(n2)**mu_r * DEXP(-lamr*Dr(n2))*dtr(n2) enddo do j = 1, ntb_t do i = 1, ntb_s !..From the bm_s moment, compute plus one moment. If we are not !.. using bm_s=2, then we must transform to the pure 2nd moment !.. (variable called "second") and then to the bm_s+1 moment. M2 = r_s(i)*oams *1.0d0 if (bm_s.gt.2.0-1.E-3 .and. bm_s.lt.2.0+1.E-3) then loga_ = sa(1) + sa(2)*Tc(j) + sa(3)*bm_s & + sa(4)*Tc(j)*bm_s + sa(5)*Tc(j)*Tc(j) & + sa(6)*bm_s*bm_s + sa(7)*Tc(j)*Tc(j)*bm_s & + sa(8)*Tc(j)*bm_s*bm_s + sa(9)*Tc(j)*Tc(j)*Tc(j) & + sa(10)*bm_s*bm_s*bm_s a_ = 10.0**loga_ b_ = sb(1) + sb(2)*Tc(j) + sb(3)*bm_s & + sb(4)*Tc(j)*bm_s + sb(5)*Tc(j)*Tc(j) & + sb(6)*bm_s*bm_s + sb(7)*Tc(j)*Tc(j)*bm_s & + sb(8)*Tc(j)*bm_s*bm_s + sb(9)*Tc(j)*Tc(j)*Tc(j) & + sb(10)*bm_s*bm_s*bm_s second = (M2/a_)**(1./b_) else second = M2 endif loga_ = sa(1) + sa(2)*Tc(j) + sa(3)*cse(1) & + sa(4)*Tc(j)*cse(1) + sa(5)*Tc(j)*Tc(j) & + sa(6)*cse(1)*cse(1) + sa(7)*Tc(j)*Tc(j)*cse(1) & + sa(8)*Tc(j)*cse(1)*cse(1) + sa(9)*Tc(j)*Tc(j)*Tc(j) & + sa(10)*cse(1)*cse(1)*cse(1) a_ = 10.0**loga_ b_ = sb(1)+sb(2)*Tc(j)+sb(3)*cse(1) + sb(4)*Tc(j)*cse(1) & + sb(5)*Tc(j)*Tc(j) + sb(6)*cse(1)*cse(1) & + sb(7)*Tc(j)*Tc(j)*cse(1) + sb(8)*Tc(j)*cse(1)*cse(1) & + sb(9)*Tc(j)*Tc(j)*Tc(j)+sb(10)*cse(1)*cse(1)*cse(1) M3 = a_ * second**b_ oM3 = 1./M3 Mrat = M2*(M2*oM3)*(M2*oM3)*(M2*oM3) M0 = (M2*oM3)**mu_s slam1 = M2 * oM3 * Lam0 slam2 = M2 * oM3 * Lam1 do n = 1, nbs N_s(n) = Mrat*(Kap0*DEXP(-slam1*Ds(n)) & + Kap1*M0*Ds(n)**mu_s * DEXP(-slam2*Ds(n)))*dts(n) enddo t1 = 0.0d0 t2 = 0.0d0 t3 = 0.0d0 t4 = 0.0d0 z1 = 0.0d0 z2 = 0.0d0 z3 = 0.0d0 z4 = 0.0d0 y1 = 0.0d0 y2 = 0.0d0 y3 = 0.0d0 y4 = 0.0d0 do n2 = 1, nbr massr = am_r * Dr(n2)**bm_r do n = 1, nbs masss = am_s * Ds(n)**bm_s dvs = 0.5d0*((vr(n2) - vs(n)) + DABS(vr(n2)-vs(n))) dvr = 0.5d0*((vs(n) - vr(n2)) + DABS(vs(n)-vr(n2))) if (massr .gt. 1.5*masss) then t1 = t1+ PI*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) & *dvs*masss * N_s(n)* N_r(n2) z1 = z1+ PI*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) & *dvs*massr * N_s(n)* N_r(n2) y1 = y1+ PI*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) & *dvs * N_s(n)* N_r(n2) else t3 = t3+ PI*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) & *dvs*masss * N_s(n)* N_r(n2) z3 = z3+ PI*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) & *dvs*massr * N_s(n)* N_r(n2) y3 = y3+ PI*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) & *dvs * N_s(n)* N_r(n2) endif if (massr .gt. 1.5*masss) then t2 = t2+ PI*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) & *dvr*massr * N_s(n)* N_r(n2) y2 = y2+ PI*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) & *dvr * N_s(n)* N_r(n2) z2 = z2+ PI*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) & *dvr*masss * N_s(n)* N_r(n2) else t4 = t4+ PI*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) & *dvr*massr * N_s(n)* N_r(n2) y4 = y4+ PI*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) & *dvr * N_s(n)* N_r(n2) z4 = z4+ PI*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) & *dvr*masss * N_s(n)* N_r(n2) endif enddo enddo tcs_racs1(i,j,k,m) = t1 tmr_racs1(i,j,k,m) = DMIN1(z1, r_r(m)*1.0d0) tcs_racs2(i,j,k,m) = t3 tmr_racs2(i,j,k,m) = z3 tcr_sacr1(i,j,k,m) = t2 tms_sacr1(i,j,k,m) = z2 tcr_sacr2(i,j,k,m) = t4 tms_sacr2(i,j,k,m) = z4 tnr_racs1(i,j,k,m) = y1 tnr_racs2(i,j,k,m) = y3 tnr_sacr1(i,j,k,m) = y2 tnr_sacr2(i,j,k,m) = y4 enddo enddo enddo !..Note wrf_dm_gatherv expects zero-based km_s, km_e (J. Michalakes, 2009Oct30). #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) CALL wrf_dm_gatherv(tcs_racs1, ntb_s*ntb_t, km_s, km_e, R8SIZE) CALL wrf_dm_gatherv(tmr_racs1, ntb_s*ntb_t, km_s, km_e, R8SIZE) CALL wrf_dm_gatherv(tcs_racs2, ntb_s*ntb_t, km_s, km_e, R8SIZE) CALL wrf_dm_gatherv(tmr_racs2, ntb_s*ntb_t, km_s, km_e, R8SIZE) CALL wrf_dm_gatherv(tcr_sacr1, ntb_s*ntb_t, km_s, km_e, R8SIZE) CALL wrf_dm_gatherv(tms_sacr1, ntb_s*ntb_t, km_s, km_e, R8SIZE) CALL wrf_dm_gatherv(tcr_sacr2, ntb_s*ntb_t, km_s, km_e, R8SIZE) CALL wrf_dm_gatherv(tms_sacr2, ntb_s*ntb_t, km_s, km_e, R8SIZE) CALL wrf_dm_gatherv(tnr_racs1, ntb_s*ntb_t, km_s, km_e, R8SIZE) CALL wrf_dm_gatherv(tnr_racs2, ntb_s*ntb_t, km_s, km_e, R8SIZE) CALL wrf_dm_gatherv(tnr_sacr1, ntb_s*ntb_t, km_s, km_e, R8SIZE) CALL wrf_dm_gatherv(tnr_sacr2, ntb_s*ntb_t, km_s, km_e, R8SIZE) #endif end subroutine qr_acr_qs !+---+-----------------------------------------------------------------+ !ctrlL !+---+-----------------------------------------------------------------+ !..This is a literal adaptation of Bigg (1954) probability of drops of !..a particular volume freezing. Given this probability, simply freeze !..the proportion of drops summing their masses. !+---+-----------------------------------------------------------------+ subroutine freezeH2O implicit none !..Local variables INTEGER:: i, j, k, m, n, n2 DOUBLE PRECISION, DIMENSION(nbr):: N_r, massr DOUBLE PRECISION, DIMENSION(nbc):: N_c, massc DOUBLE PRECISION:: sum1, sum2, sumn1, sumn2, & prob, vol, Texp, orho_w, & lam_exp, lamr, N0_r, lamc, N0_c, y REAL:: T_adjust INTEGER:: nu_c !+---+ orho_w = 1./rho_w do n2 = 1, nbr massr(n2) = am_r*Dr(n2)**bm_r enddo do n = 1, nbc massc(n) = am_r*Dc(n)**bm_r enddo !..Freeze water (smallest drops become cloud ice, otherwise graupel). do m = 1, ntb_IN T_adjust = MAX(-3.0, MIN(3.0 - ALOG10(Nt_IN(m)), 3.0)) do k = 1, 45 ! print*, ' Freezing water for temp = ', -k Texp = DEXP( DFLOAT(k) - T_adjust*1.0D0 ) - 1.0D0 do j = 1, ntb_r1 do i = 1, ntb_r lam_exp = (N0r_exp(j)*am_r*crg(1)/r_r(i))**ore1 lamr = lam_exp * (crg(3)*org2*org1)**obmr N0_r = N0r_exp(j)/(crg(2)*lam_exp) * lamr**cre(2) sum1 = 0.0d0 sum2 = 0.0d0 sumn1 = 0.0d0 sumn2 = 0.0d0 do n2 = nbr, 1, -1 N_r(n2) = N0_r*Dr(n2)**mu_r*DEXP(-lamr*Dr(n2))*dtr(n2) vol = massr(n2)*orho_w prob = 1.0D0 - DEXP(-120.0D0*vol*5.2D-4 * Texp) if (massr(n2) .lt. xm0g) then sumn1 = sumn1 + prob*N_r(n2) sum1 = sum1 + prob*N_r(n2)*massr(n2) else sumn2 = sumn2 + prob*N_r(n2) sum2 = sum2 + prob*N_r(n2)*massr(n2) endif if ((sum1+sum2).ge.r_r(i)) EXIT enddo tpi_qrfz(i,j,k,m) = sum1 tni_qrfz(i,j,k,m) = sumn1 tpg_qrfz(i,j,k,m) = sum2 tnr_qrfz(i,j,k,m) = sumn2 enddo enddo do j = 1, nbc nu_c = MIN(15, NINT(1000.E6/t_Nc(j)) + 2) do i = 1, ntb_c lamc = (t_Nc(j)*am_r* ccg(2,nu_c) * ocg1(nu_c) / r_c(i))**obmr N0_c = t_Nc(j)*ocg1(nu_c) * lamc**cce(1,nu_c) sum1 = 0.0d0 sumn2 = 0.0d0 do n = nbc, 1, -1 vol = massc(n)*orho_w prob = 1.0D0 - DEXP(-120.0D0*vol*5.2D-4 * Texp) N_c(n) = N0_c*Dc(n)**nu_c*EXP(-lamc*Dc(n))*dtc(n) sumn2 = MIN(t_Nc(j), sumn2 + prob*N_c(n)) sum1 = sum1 + prob*N_c(n)*massc(n) if (sum1 .ge. r_c(i)) EXIT enddo tpi_qcfz(i,j,k,m) = sum1 tni_qcfz(i,j,k,m) = sumn2 enddo enddo enddo enddo end subroutine freezeH2O !+---+-----------------------------------------------------------------+ !ctrlL !+---+-----------------------------------------------------------------+ !..Cloud ice converting to snow since portion greater than min snow !.. size. Given cloud ice content (kg/m**3), number concentration !.. (#/m**3) and gamma shape parameter, mu_i, break the distrib into !.. bins and figure out the mass/number of ice with sizes larger than !.. D0s. Also, compute incomplete gamma function for the integration !.. of ice depositional growth from diameter=0 to D0s. Amount of !.. ice depositional growth is this portion of distrib while larger !.. diameters contribute to snow growth (as in Harrington et al. 1995). !+---+-----------------------------------------------------------------+ subroutine qi_aut_qs implicit none !..Local variables INTEGER:: i, j, n2 DOUBLE PRECISION, DIMENSION(nbi):: N_i DOUBLE PRECISION:: N0_i, lami, Di_mean, t1, t2 REAL:: xlimit_intg !+---+ do j = 1, ntb_i1 do i = 1, ntb_i lami = (am_i*cig(2)*oig1*Nt_i(j)/r_i(i))**obmi Di_mean = (bm_i + mu_i + 1.) / lami N0_i = Nt_i(j)*oig1 * lami**cie(1) t1 = 0.0d0 t2 = 0.0d0 if (SNGL(Di_mean) .gt. 5.*D0s) then t1 = r_i(i) t2 = Nt_i(j) tpi_ide(i,j) = 0.0D0 elseif (SNGL(Di_mean) .lt. D0i) then t1 = 0.0D0 t2 = 0.0D0 tpi_ide(i,j) = 1.0D0 else xlimit_intg = lami*D0s tpi_ide(i,j) = GAMMP(mu_i+2.0, xlimit_intg) * 1.0D0 do n2 = 1, nbi N_i(n2) = N0_i*Di(n2)**mu_i * DEXP(-lami*Di(n2))*dti(n2) if (Di(n2).ge.D0s) then t1 = t1 + N_i(n2) * am_i*Di(n2)**bm_i t2 = t2 + N_i(n2) endif enddo endif tps_iaus(i,j) = t1 tni_iaus(i,j) = t2 enddo enddo end subroutine qi_aut_qs !ctrlL !+---+-----------------------------------------------------------------+ !..Variable collision efficiency for rain collecting cloud water using !.. method of Beard and Grover, 1974 if a/A less than 0.25; otherwise !.. uses polynomials to get close match of Pruppacher & Klett Fig 14-9. !+---+-----------------------------------------------------------------+ subroutine table_Efrw implicit none !..Local variables DOUBLE PRECISION:: vtr, stokes, reynolds, Ef_rw DOUBLE PRECISION:: p, yc0, F, G, H, z, K0, X INTEGER:: i, j do j = 1, nbc do i = 1, nbr Ef_rw = 0.0 p = Dc(j)/Dr(i) if (Dr(i).lt.50.E-6 .or. Dc(j).lt.3.E-6) then t_Efrw(i,j) = 0.0 elseif (p.gt.0.25) then X = Dc(j)*1.D6 if (Dr(i) .lt. 75.e-6) then Ef_rw = 0.026794*X - 0.20604 elseif (Dr(i) .lt. 125.e-6) then Ef_rw = -0.00066842*X*X + 0.061542*X - 0.37089 elseif (Dr(i) .lt. 175.e-6) then Ef_rw = 4.091e-06*X*X*X*X - 0.00030908*X*X*X & + 0.0066237*X*X - 0.0013687*X - 0.073022 elseif (Dr(i) .lt. 250.e-6) then Ef_rw = 9.6719e-5*X*X*X - 0.0068901*X*X + 0.17305*X & - 0.65988 elseif (Dr(i) .lt. 350.e-6) then Ef_rw = 9.0488e-5*X*X*X - 0.006585*X*X + 0.16606*X & - 0.56125 else Ef_rw = 0.00010721*X*X*X - 0.0072962*X*X + 0.1704*X & - 0.46929 endif else vtr = -0.1021 + 4.932E3*Dr(i) - 0.9551E6*Dr(i)*Dr(i) & + 0.07934E9*Dr(i)*Dr(i)*Dr(i) & - 0.002362E12*Dr(i)*Dr(i)*Dr(i)*Dr(i) stokes = Dc(j)*Dc(j)*vtr*rho_w/(9.*1.718E-5*Dr(i)) reynolds = 9.*stokes/(p*p*rho_w) F = DLOG(reynolds) G = -0.1007D0 - 0.358D0*F + 0.0261D0*F*F K0 = DEXP(G) z = DLOG(stokes/(K0+1.D-15)) H = 0.1465D0 + 1.302D0*z - 0.607D0*z*z + 0.293D0*z*z*z yc0 = 2.0D0/PI * ATAN(H) Ef_rw = (yc0+p)*(yc0+p) / ((1.+p)*(1.+p)) endif t_Efrw(i,j) = MAX(0.0, MIN(SNGL(Ef_rw), 0.95)) enddo enddo end subroutine table_Efrw !ctrlL !+---+-----------------------------------------------------------------+ !..Variable collision efficiency for snow collecting cloud water using !.. method of Wang and Ji, 2000 except equate melted snow diameter to !.. their "effective collision cross-section." !+---+-----------------------------------------------------------------+ subroutine table_Efsw implicit none !..Local variables DOUBLE PRECISION:: Ds_m, vts, vtc, stokes, reynolds, Ef_sw DOUBLE PRECISION:: p, yc0, F, G, H, z, K0 INTEGER:: i, j do j = 1, nbc vtc = 1.19D4 * (1.0D4*Dc(j)*Dc(j)*0.25D0) do i = 1, nbs vts = av_s*Ds(i)**bv_s * DEXP(-fv_s*Ds(i)) - vtc Ds_m = (am_s*Ds(i)**bm_s / am_r)**obmr p = Dc(j)/Ds_m if (p.gt.0.25 .or. Ds(i).lt.D0s .or. Dc(j).lt.6.E-6 & .or. vts.lt.1.E-3) then t_Efsw(i,j) = 0.0 else stokes = Dc(j)*Dc(j)*vts*rho_w/(9.*1.718E-5*Ds_m) reynolds = 9.*stokes/(p*p*rho_w) F = DLOG(reynolds) G = -0.1007D0 - 0.358D0*F + 0.0261D0*F*F K0 = DEXP(G) z = DLOG(stokes/(K0+1.D-15)) H = 0.1465D0 + 1.302D0*z - 0.607D0*z*z + 0.293D0*z*z*z yc0 = 2.0D0/PI * ATAN(H) Ef_sw = (yc0+p)*(yc0+p) / ((1.+p)*(1.+p)) t_Efsw(i,j) = MAX(0.0, MIN(SNGL(Ef_sw), 0.95)) endif enddo enddo end subroutine table_Efsw !ctrlL !+---+-----------------------------------------------------------------+ !..Function to compute collision efficiency of collector species (rain, !.. snow, graupel) of aerosols. Follows Wang et al, 2010, ACP, which !.. follows Slinn (1983). !+---+-----------------------------------------------------------------+ real function Eff_aero(D, Da, visc,rhoa,Temp,species) implicit none real:: D, Da, visc, rhoa, Temp character(LEN=1):: species real:: aval, Cc, diff, Re, Sc, St, St2, vt, Eff real, parameter:: boltzman = 1.3806503E-23 real, parameter:: meanPath = 0.0256E-6 vt = 1. if (species .eq. 'r') then vt = -0.1021 + 4.932E3*D - 0.9551E6*D*D & + 0.07934E9*D*D*D - 0.002362E12*D*D*D*D elseif (species .eq. 's') then vt = av_s*D**bv_s elseif (species .eq. 'g') then vt = av_g*D**bv_g endif Cc = 1. + 2.*meanPath/Da *(1.257+0.4*exp(-0.55*Da/meanPath)) diff = boltzman*Temp*Cc/(3.*PI*visc*Da) Re = 0.5*rhoa*D*vt/visc Sc = visc/(rhoa*diff) St = Da*Da*vt*1000./(9.*visc*D) aval = 1.+LOG(1.+Re) St2 = (1.2 + 1./12.*aval)/(1.+aval) Eff = 4./(Re*Sc) * (1. + 0.4*SQRT(Re)*Sc**0.3333 & + 0.16*SQRT(Re)*SQRT(Sc)) & + 4.*Da/D * (0.02 + Da/D*(1.+2.*SQRT(Re))) if (St.gt.St2) Eff = Eff + ( (St-St2)/(St-St2+0.666667))**1.5 Eff_aero = MAX(1.E-5, MIN(Eff, 1.0)) end function Eff_aero !ctrlL !+---+-----------------------------------------------------------------+ !..Integrate rain size distribution from zero to D-star to compute the !.. number of drops smaller than D-star that evaporate in a single !.. timestep. Drops larger than D-star dont evaporate entirely so do !.. not affect number concentration. !+---+-----------------------------------------------------------------+ subroutine table_dropEvap implicit none !..Local variables INTEGER:: i, j, k, n DOUBLE PRECISION, DIMENSION(nbc):: N_c, massc DOUBLE PRECISION:: summ, summ2, lamc, N0_c INTEGER:: nu_c ! DOUBLE PRECISION:: Nt_r, N0, lam_exp, lam ! REAL:: xlimit_intg do n = 1, nbc massc(n) = am_r*Dc(n)**bm_r enddo do k = 1, nbc nu_c = MIN(15, NINT(1000.E6/t_Nc(k)) + 2) do j = 1, ntb_c lamc = (t_Nc(k)*am_r* ccg(2,nu_c)*ocg1(nu_c) / r_c(j))**obmr N0_c = t_Nc(k)*ocg1(nu_c) * lamc**cce(1,nu_c) do i = 1, nbc !-GT tnc_wev(i,j,k) = GAMMP(nu_c+1., SNGL(Dc(i)*lamc))*t_Nc(k) N_c(i) = N0_c* Dc(i)**nu_c*EXP(-lamc*Dc(i))*dtc(i) ! if(j.eq.18 .and. k.eq.50) print*, ' N_c = ', N_c(i) summ = 0. summ2 = 0. do n = 1, i summ = summ + massc(n)*N_c(n) summ2 = summ2 + N_c(n) enddo ! if(j.eq.18 .and. k.eq.50) print*, ' DEBUG-TABLE: ', r_c(j), t_Nc(k), summ2, summ tpc_wev(i,j,k) = summ tnc_wev(i,j,k) = summ2 enddo enddo enddo ! !..To do the same thing for rain. ! ! do k = 1, ntb_r ! do j = 1, ntb_r1 ! lam_exp = (N0r_exp(j)*am_r*crg(1)/r_r(k))**ore1 ! lam = lam_exp * (crg(3)*org2*org1)**obmr ! N0 = N0r_exp(j)/(crg(2)*lam_exp) * lam**cre(2) ! Nt_r = N0 * crg(2) / lam**cre(2) ! do i = 1, nbr ! xlimit_intg = lam*Dr(i) ! tnr_rev(i,j,k) = GAMMP(mu_r+1.0, xlimit_intg) * Nt_r ! enddo ! enddo ! enddo ! TO APPLY TABLE ABOVE !..Rain lookup table indexes. ! Dr_star = DSQRT(-2.D0*DT * t1_evap/(2.*PI) & ! * 0.78*4.*diffu(k)*xsat*rvs/rho_w) ! idx_d = NINT(1.0 + FLOAT(nbr) * DLOG(Dr_star/D0r) & ! / DLOG(Dr(nbr)/D0r)) ! idx_d = MAX(1, MIN(idx_d, nbr)) ! ! nir = NINT(ALOG10(rr(k))) ! do nn = nir-1, nir+1 ! n = nn ! if ( (rr(k)/10.**nn).ge.1.0 .and. & ! (rr(k)/10.**nn).lt.10.0) goto 154 ! enddo !154 continue ! idx_r = INT(rr(k)/10.**n) + 10*(n-nir2) - (n-nir2) ! idx_r = MAX(1, MIN(idx_r, ntb_r)) ! ! lamr = (am_r*crg(3)*org2*nr(k)/rr(k))**obmr ! lam_exp = lamr * (crg(3)*org2*org1)**bm_r ! N0_exp = org1*rr(k)/am_r * lam_exp**cre(1) ! nir = NINT(DLOG10(N0_exp)) ! do nn = nir-1, nir+1 ! n = nn ! if ( (N0_exp/10.**nn).ge.1.0 .and. & ! (N0_exp/10.**nn).lt.10.0) goto 155 ! enddo !155 continue ! idx_r1 = INT(N0_exp/10.**n) + 10*(n-nir3) - (n-nir3) ! idx_r1 = MAX(1, MIN(idx_r1, ntb_r1)) ! ! pnr_rev(k) = MIN(nr(k)*odts, SNGL(tnr_rev(idx_d,idx_r1,idx_r) & ! RAIN2M ! * odts)) end subroutine table_dropEvap ! !ctrlL !+---+-----------------------------------------------------------------+ !..Fill the table of CCN activation data created from parcel model run !.. by Trude Eidhammer with inputs of aerosol number concentration, !.. vertical velocity, temperature, lognormal mean aerosol radius, and !.. hygroscopicity, kappa. The data are read from external file and !.. contain activated fraction of CCN for given conditions. !+---+-----------------------------------------------------------------+ subroutine table_ccnAct USE module_domain USE module_dm implicit none LOGICAL, EXTERNAL:: wrf_dm_on_monitor !..Local variables INTEGER:: iunit_mp_th1, i LOGICAL:: opened CHARACTER*64 errmess iunit_mp_th1 = -1 IF ( wrf_dm_on_monitor() ) THEN DO i = 20,99 INQUIRE ( i , OPENED = opened ) IF ( .NOT. opened ) THEN iunit_mp_th1 = i GOTO 2010 ENDIF ENDDO 2010 CONTINUE ENDIF CALL wrf_dm_bcast_bytes ( iunit_mp_th1 , IWORDSIZE ) IF ( iunit_mp_th1 < 0 ) THEN CALL wrf_error_fatal ( 'module_mp_thompson: table_ccnAct: '// & 'Can not find unused fortran unit to read in lookup table.') ENDIF IF ( wrf_dm_on_monitor() ) THEN WRITE(errmess, '(A,I2)') 'module_mp_thompson: opening CCN_ACTIVATE.BIN on unit ',iunit_mp_th1 CALL wrf_debug(150, errmess) OPEN(iunit_mp_th1,FILE='CCN_ACTIVATE.BIN', & FORM='UNFORMATTED',STATUS='OLD',ERR=9009) ENDIF #define DM_BCAST_MACRO(A) CALL wrf_dm_bcast_bytes(A, size(A)*R4SIZE) IF ( wrf_dm_on_monitor() ) READ(iunit_mp_th1,ERR=9010) tnccn_act DM_BCAST_MACRO(tnccn_act) RETURN 9009 CONTINUE WRITE( errmess , '(A,I2)' ) 'module_mp_thompson: error opening CCN_ACTIVATE.BIN on unit ',iunit_mp_th1 CALL wrf_error_fatal(errmess) RETURN 9010 CONTINUE WRITE( errmess , '(A,I2)' ) 'module_mp_thompson: error reading CCN_ACTIVATE.BIN on unit ',iunit_mp_th1 CALL wrf_error_fatal(errmess) end subroutine table_ccnAct !^L !+---+-----------------------------------------------------------------+ !..Retrieve fraction of CCN that gets activated given the model temp, !.. vertical velocity, and available CCN concentration. The lookup !.. table (read from external file) has CCN concentration varying the !.. quickest, then updraft, then temperature, then mean aerosol radius, !.. and finally hygroscopicity, kappa. !.. TO_DO ITEM: For radiation cooling producing fog, in which case the !.. updraft velocity could easily be negative, we could use the temp !.. and its tendency to diagnose a pretend postive updraft velocity. !+---+-----------------------------------------------------------------+ real function activ_ncloud(Tt, Ww, NCCN) implicit none REAL, INTENT(IN):: Tt, Ww, NCCN REAL:: n_local, w_local INTEGER:: i, j, k, l, m, n REAL:: A, B, C, D, t, u, x1, x2, y1, y2, nx, wy, fraction ! ta_Na = (/10.0, 31.6, 100.0, 316.0, 1000.0, 3160.0, 10000.0/) ntb_arc ! ta_Ww = (/0.01, 0.0316, 0.1, 0.316, 1.0, 3.16, 10.0, 31.6, 100.0/) ntb_arw ! ta_Tk = (/243.15, 253.15, 263.15, 273.15, 283.15, 293.15, 303.15/) ntb_art ! ta_Ra = (/0.01, 0.02, 0.04, 0.08, 0.16/) ntb_arr ! ta_Ka = (/0.2, 0.4, 0.6, 0.8/) ntb_ark n_local = NCCN * 1.E-6 w_local = Ww if (n_local .ge. ta_Na(ntb_arc)) then n_local = ta_Na(ntb_arc) - 1.0 elseif (n_local .le. ta_Na(1)) then n_local = ta_Na(1) + 1.0 endif do n = 2, ntb_arc if (n_local.ge.ta_Na(n-1) .and. n_local.lt.ta_Na(n)) goto 8003 enddo 8003 continue i = n x1 = LOG(ta_Na(i-1)) x2 = LOG(ta_Na(i)) if (w_local .ge. ta_Ww(ntb_arw)) then w_local = ta_Ww(ntb_arw) - 1.0 elseif (w_local .le. ta_Ww(1)) then w_local = ta_Ww(1) + 0.001 endif do n = 2, ntb_arw if (w_local.ge.ta_Ww(n-1) .and. w_local.lt.ta_Ww(n)) goto 8005 enddo 8005 continue j = n y1 = LOG(ta_Ww(j-1)) y2 = LOG(ta_Ww(j)) k = MAX(1, MIN( NINT( (Tt - ta_Tk(1))*0.1) + 1, ntb_art)) !..The next two values are indexes of mean aerosol radius and !.. hygroscopicity. Currently these are constant but a future version !.. should implement other variables to allow more freedom such as !.. at least simple separation of tiny size sulfates from larger !.. sea salts. l = 3 m = 2 A = tnccn_act(i-1,j-1,k,l,m) B = tnccn_act(i,j-1,k,l,m) C = tnccn_act(i,j,k,l,m) D = tnccn_act(i-1,j,k,l,m) nx = LOG(n_local) wy = LOG(w_local) t = (nx-x1)/(x2-x1) u = (wy-y1)/(y2-y1) ! t = (n_local-ta(Na(i-1))/(ta_Na(i)-ta_Na(i-1)) ! u = (w_local-ta_Ww(j-1))/(ta_Ww(j)-ta_Ww(j-1)) fraction = (1.0-t)*(1.0-u)*A + t*(1.0-u)*B + t*u*C + (1.0-t)*u*D ! if (NCCN*fraction .gt. 0.75*Nt_c_max) then ! write(*,*) ' DEBUG-GT ', n_local, w_local, Tt, i, j, k ! endif activ_ncloud = NCCN*fraction end function activ_ncloud !+---+-----------------------------------------------------------------+ !+---+-----------------------------------------------------------------+ SUBROUTINE GCF(GAMMCF,A,X,GLN) ! --- RETURNS THE INCOMPLETE GAMMA FUNCTION Q(A,X) EVALUATED BY ITS ! --- CONTINUED FRACTION REPRESENTATION AS GAMMCF. ALSO RETURNS ! --- LN(GAMMA(A)) AS GLN. THE CONTINUED FRACTION IS EVALUATED BY ! --- A MODIFIED LENTZ METHOD. ! --- USES GAMMLN IMPLICIT NONE INTEGER, PARAMETER:: ITMAX=100 REAL, PARAMETER:: gEPS=3.E-7 REAL, PARAMETER:: FPMIN=1.E-30 REAL, INTENT(IN):: A, X REAL:: GAMMCF,GLN INTEGER:: I REAL:: AN,B,C,D,DEL,H GLN=GAMMLN(A) B=X+1.-A C=1./FPMIN D=1./B H=D DO 11 I=1,ITMAX AN=-I*(I-A) B=B+2. D=AN*D+B IF(ABS(D).LT.FPMIN)D=FPMIN C=B+AN/C IF(ABS(C).LT.FPMIN)C=FPMIN D=1./D DEL=D*C H=H*DEL IF(ABS(DEL-1.).LT.gEPS)GOTO 1 11 CONTINUE PRINT *, 'A TOO LARGE, ITMAX TOO SMALL IN GCF' 1 GAMMCF=EXP(-X+A*LOG(X)-GLN)*H END SUBROUTINE GCF ! (C) Copr. 1986-92 Numerical Recipes Software 2.02 !+---+-----------------------------------------------------------------+ SUBROUTINE GSER(GAMSER,A,X,GLN) ! --- RETURNS THE INCOMPLETE GAMMA FUNCTION P(A,X) EVALUATED BY ITS ! --- ITS SERIES REPRESENTATION AS GAMSER. ALSO RETURNS LN(GAMMA(A)) ! --- AS GLN. ! --- USES GAMMLN IMPLICIT NONE INTEGER, PARAMETER:: ITMAX=100 REAL, PARAMETER:: gEPS=3.E-7 REAL, INTENT(IN):: A, X REAL:: GAMSER,GLN INTEGER:: N REAL:: AP,DEL,SUM GLN=GAMMLN(A) IF(X.LE.0.)THEN IF(X.LT.0.) PRINT *, 'X < 0 IN GSER' GAMSER=0. RETURN ENDIF AP=A SUM=1./A DEL=SUM DO 11 N=1,ITMAX AP=AP+1. DEL=DEL*X/AP SUM=SUM+DEL IF(ABS(DEL).LT.ABS(SUM)*gEPS)GOTO 1 11 CONTINUE PRINT *,'A TOO LARGE, ITMAX TOO SMALL IN GSER' 1 GAMSER=SUM*EXP(-X+A*LOG(X)-GLN) END SUBROUTINE GSER ! (C) Copr. 1986-92 Numerical Recipes Software 2.02 !+---+-----------------------------------------------------------------+ REAL FUNCTION GAMMLN(XX) ! --- RETURNS THE VALUE LN(GAMMA(XX)) FOR XX > 0. IMPLICIT NONE REAL, INTENT(IN):: XX DOUBLE PRECISION, PARAMETER:: STP = 2.5066282746310005D0 DOUBLE PRECISION, DIMENSION(6), PARAMETER:: & COF = (/76.18009172947146D0, -86.50532032941677D0, & 24.01409824083091D0, -1.231739572450155D0, & .1208650973866179D-2, -.5395239384953D-5/) DOUBLE PRECISION:: SER,TMP,X,Y INTEGER:: J X=XX Y=X TMP=X+5.5D0 TMP=(X+0.5D0)*LOG(TMP)-TMP SER=1.000000000190015D0 DO 11 J=1,6 Y=Y+1.D0 SER=SER+COF(J)/Y 11 CONTINUE GAMMLN=TMP+LOG(STP*SER/X) END FUNCTION GAMMLN ! (C) Copr. 1986-92 Numerical Recipes Software 2.02 !+---+-----------------------------------------------------------------+ REAL FUNCTION GAMMP(A,X) ! --- COMPUTES THE INCOMPLETE GAMMA FUNCTION P(A,X) ! --- SEE ABRAMOWITZ AND STEGUN 6.5.1 ! --- USES GCF,GSER IMPLICIT NONE REAL, INTENT(IN):: A,X REAL:: GAMMCF,GAMSER,GLN GAMMP = 0. IF((X.LT.0.) .OR. (A.LE.0.)) THEN PRINT *, 'BAD ARGUMENTS IN GAMMP' RETURN ELSEIF(X.LT.A+1.)THEN CALL GSER(GAMSER,A,X,GLN) GAMMP=GAMSER ELSE CALL GCF(GAMMCF,A,X,GLN) GAMMP=1.-GAMMCF ENDIF END FUNCTION GAMMP ! (C) Copr. 1986-92 Numerical Recipes Software 2.02 !+---+-----------------------------------------------------------------+ REAL FUNCTION WGAMMA(y) IMPLICIT NONE REAL, INTENT(IN):: y WGAMMA = EXP(GAMMLN(y)) END FUNCTION WGAMMA !+---+-----------------------------------------------------------------+ ! THIS FUNCTION CALCULATES THE LIQUID SATURATION VAPOR MIXING RATIO AS ! A FUNCTION OF TEMPERATURE AND PRESSURE ! REAL FUNCTION RSLF(P,T) IMPLICIT NONE REAL, INTENT(IN):: P, T REAL:: ESL,X REAL, PARAMETER:: C0= .611583699E03 REAL, PARAMETER:: C1= .444606896E02 REAL, PARAMETER:: C2= .143177157E01 REAL, PARAMETER:: C3= .264224321E-1 REAL, PARAMETER:: C4= .299291081E-3 REAL, PARAMETER:: C5= .203154182E-5 REAL, PARAMETER:: C6= .702620698E-8 REAL, PARAMETER:: C7= .379534310E-11 REAL, PARAMETER:: C8=-.321582393E-13 X=MAX(-80.,T-273.16) ! ESL=612.2*EXP(17.67*X/(T-29.65)) ESL=C0+X*(C1+X*(C2+X*(C3+X*(C4+X*(C5+X*(C6+X*(C7+X*C8))))))) RSLF=.622*ESL/(P-ESL) ! ALTERNATIVE ! ; Source: Murphy and Koop, Review of the vapour pressure of ice and ! supercooled water for atmospheric applications, Q. J. R. ! Meteorol. Soc (2005), 131, pp. 1539-1565. ! ESL = EXP(54.842763 - 6763.22 / T - 4.210 * ALOG(T) + 0.000367 * T ! + TANH(0.0415 * (T - 218.8)) * (53.878 - 1331.22 ! / T - 9.44523 * ALOG(T) + 0.014025 * T)) END FUNCTION RSLF !+---+-----------------------------------------------------------------+ ! THIS FUNCTION CALCULATES THE ICE SATURATION VAPOR MIXING RATIO AS A ! FUNCTION OF TEMPERATURE AND PRESSURE ! REAL FUNCTION RSIF(P,T) IMPLICIT NONE REAL, INTENT(IN):: P, T REAL:: ESI,X REAL, PARAMETER:: C0= .609868993E03 REAL, PARAMETER:: C1= .499320233E02 REAL, PARAMETER:: C2= .184672631E01 REAL, PARAMETER:: C3= .402737184E-1 REAL, PARAMETER:: C4= .565392987E-3 REAL, PARAMETER:: C5= .521693933E-5 REAL, PARAMETER:: C6= .307839583E-7 REAL, PARAMETER:: C7= .105785160E-9 REAL, PARAMETER:: C8= .161444444E-12 X=MAX(-80.,T-273.16) ESI=C0+X*(C1+X*(C2+X*(C3+X*(C4+X*(C5+X*(C6+X*(C7+X*C8))))))) RSIF=.622*ESI/(P-ESI) ! ALTERNATIVE ! ; Source: Murphy and Koop, Review of the vapour pressure of ice and ! supercooled water for atmospheric applications, Q. J. R. ! Meteorol. Soc (2005), 131, pp. 1539-1565. ! ESI = EXP(9.550426 - 5723.265/T + 3.53068*ALOG(T) - 0.00728332*T) END FUNCTION RSIF !+---+-----------------------------------------------------------------+ real function iceDeMott(tempc, qv, qvs, qvsi, rho, nifa) implicit none REAL, INTENT(IN):: tempc, qv, qvs, qvsi, rho, nifa !..Local vars REAL:: satw, sati, siw, p_x, si0x, dtt, dsi, dsw, dab, fc, hx REAL:: ntilde, n_in, nmax, nhat, mux, xni, nifa_cc REAL, PARAMETER:: p_c1 = 1000. REAL, PARAMETER:: p_rho_c = 0.76 REAL, PARAMETER:: p_alpha = 1.0 REAL, PARAMETER:: p_gam = 2. REAL, PARAMETER:: delT = 5. REAL, PARAMETER:: T0x = -40. REAL, PARAMETER:: Sw0x = 0.97 REAL, PARAMETER:: delSi = 0.1 REAL, PARAMETER:: hdm = 0.15 REAL, PARAMETER:: p_psi = 0.058707*p_gam/p_rho_c REAL, PARAMETER:: aap = 1. REAL, PARAMETER:: bbp = 0. REAL, PARAMETER:: y1p = -35. REAL, PARAMETER:: y2p = -25. !+---+ xni = 0.0 satw = qv/qvs sati = qv/qvsi siw = qvs/qvsi p_x = -1.0261+(3.1656e-3*tempc)+(5.3938e-4*(tempc*tempc)) & + (8.2584e-6*(tempc*tempc*tempc)) si0x = 1.+(10.**p_x) if (sati.ge.si0x .and. satw.lt.0.985) then dtt = delta_p (tempc, T0x, T0x+delT, 1., hdm) dsi = delta_p (sati, Si0x, Si0x+delSi, 0., 1.) dsw = delta_p (satw, Sw0x, 1., 0., 1.) fc = dtt*dsi*0.5 hx = min(fc+((1.-fc)*dsw), 1.) ntilde = p_c1*p_gam*((exp(12.96*(sati-1.1)))**0.3) / p_rho_c if (tempc .le. y1p) then n_in = ntilde elseif (tempc .ge. y2p) then n_in = p_psi*p_c1*exp(12.96*(sati-1.)-0.639) else if (tempc .le. -30.) then nmax = p_c1*p_gam*(exp(12.96*(siw-1.1)))**0.3/p_rho_c else nmax = p_psi*p_c1*exp(12.96*(siw-1.)-0.639) endif ntilde = MIN(ntilde, nmax) nhat = MIN(p_psi*p_c1*exp(12.96*(sati-1.)-0.639), nmax) dab = delta_p (tempc, y1p, y2p, aap, bbp) n_in = MIN(nhat*(ntilde/nhat)**dab, nmax) endif mux = hx*p_alpha*n_in*rho xni = mux*((6700.*nifa)-200.)/((6700.*5.E5)-200.) elseif (satw.ge.0.985) then nifa_cc = nifa*RHO_NOT*1.E-6 xni = (5.94e-5*(-tempc)**3.33) & * (nifa_cc**((-0.0264*(tempc))+0.0033)) xni = xni*rho/RHO_NOT * 1000. endif iceDeMott = MAX(0., xni) end FUNCTION iceDeMott !+---+-----------------------------------------------------------------+ !..Newer research since Koop et al (2001) suggests that the freezing !.. rate should be lower than original paper, so J_rate is reduced !.. by two orders of magnitude. real function iceKoop(temp, qv, qvs, naero, dt) implicit none REAL, INTENT(IN):: temp, qv, qvs, naero, DT REAL:: mu_diff, a_w_i, delta_aw, log_J_rate, J_rate, prob_h, satw REAL:: xni xni = 0.0 satw = qv/qvs mu_diff = 210368.0 + (131.438*temp) - (3.32373E6/temp) & & - (41729.1*alog(temp)) a_w_i = exp(mu_diff/(R_uni*temp)) delta_aw = satw - a_w_i log_J_rate = -906.7 + (8502.0*delta_aw) & & - (26924.0*delta_aw*delta_aw) & & + (29180.0*delta_aw*delta_aw*delta_aw) log_J_rate = MIN(20.0, log_J_rate) J_rate = 0.01*(10.**log_J_rate) ! cm-3 s-1 prob_h = MIN(1.-exp(-J_rate*ar_volume*DT), 1.) if (prob_h .gt. 0.) then xni = MIN(prob_h*naero, 250.E3) endif iceKoop = MAX(0.0, xni) end FUNCTION iceKoop !+---+-----------------------------------------------------------------+ !.. Helper routine for Phillips et al (2008) ice nucleation. Trude REAL FUNCTION delta_p (yy, y1, y2, aa, bb) IMPLICIT NONE REAL, INTENT(IN):: yy, y1, y2, aa, bb REAL:: dab, A, B, a0, a1, a2, a3 A = 6.*(aa-bb)/((y2-y1)*(y2-y1)*(y2-y1)) B = aa+(A*y1*y1*y1/6.)-(A*y1*y1*y2*0.5) a0 = B a1 = A*y1*y2 a2 = -A*(y1+y2)*0.5 a3 = A/3. if (yy.le.y1) then dab = aa else if (yy.ge.y2) then dab = bb else dab = a0+(a1*yy)+(a2*yy*yy)+(a3*yy*yy*yy) endif if (dab.lt.aa) then dab = aa endif if (dab.gt.bb) then dab = bb endif delta_p = dab END FUNCTION delta_p !+---+-----------------------------------------------------------------+ !ctrlL !+---+-----------------------------------------------------------------+ !..Compute _radiation_ effective radii of cloud water, ice, and snow. !.. These are entirely consistent with microphysics assumptions, not !.. constant or otherwise ad hoc as is internal to most radiation !.. schemes. Since only the smallest snowflakes should impact !.. radiation, compute from first portion of complicated Field number !.. distribution, not the second part, which is the larger sizes. !+---+-----------------------------------------------------------------+ subroutine calc_effectRad (t1d, p1d, qv1d, qc1d, nc1d, qi1d, ni1d, qs1d, & & re_qc1d, re_qi1d, re_qs1d, kts, kte) IMPLICIT NONE !..Sub arguments INTEGER, INTENT(IN):: kts, kte REAL, DIMENSION(kts:kte), INTENT(IN):: & & t1d, p1d, qv1d, qc1d, nc1d, qi1d, ni1d, qs1d REAL, DIMENSION(kts:kte), INTENT(INOUT):: re_qc1d, re_qi1d, re_qs1d !..Local variables INTEGER:: k REAL, DIMENSION(kts:kte):: rho, rc, nc, ri, ni, rs REAL:: smo2, smob, smoc REAL:: tc0, loga_, a_, b_ DOUBLE PRECISION:: lamc, lami LOGICAL:: has_qc, has_qi, has_qs INTEGER:: inu_c real, dimension(15), parameter:: g_ratio = (/24,60,120,210,336, & & 504,720,990,1320,1716,2184,2730,3360,4080,4896/) has_qc = .false. has_qi = .false. has_qs = .false. do k = kts, kte rho(k) = 0.622*p1d(k)/(R*t1d(k)*(qv1d(k)+0.622)) rc(k) = MAX(R1, qc1d(k)*rho(k)) nc(k) = MAX(R2, nc1d(k)*rho(k)) if (.NOT. is_aerosol_aware) nc(k) = Nt_c if (rc(k).gt.R1 .and. nc(k).gt.R2) has_qc = .true. ri(k) = MAX(R1, qi1d(k)*rho(k)) ni(k) = MAX(R2, ni1d(k)*rho(k)) if (ri(k).gt.R1 .and. ni(k).gt.R2) has_qi = .true. rs(k) = MAX(R1, qs1d(k)*rho(k)) if (rs(k).gt.R1) has_qs = .true. enddo if (has_qc) then do k = kts, kte if (rc(k).le.R1 .or. nc(k).le.R2) CYCLE inu_c = MIN(15, NINT(1000.E6/nc(k)) + 2) lamc = (nc(k)*am_r*g_ratio(inu_c)/rc(k))**obmr re_qc1d(k) = MAX(2.51E-6, MIN(SNGL(0.5D0 * DBLE(3.+inu_c)/lamc), 50.E-6)) enddo endif if (has_qi) then do k = kts, kte if (ri(k).le.R1 .or. ni(k).le.R2) CYCLE lami = (am_i*cig(2)*oig1*ni(k)/ri(k))**obmi re_qi1d(k) = MAX(10.01E-6, MIN(SNGL(0.5D0 * DBLE(3.+mu_i)/lami), 125.E-6)) enddo endif if (has_qs) then do k = kts, kte if (rs(k).le.R1) CYCLE tc0 = MIN(-0.1, t1d(k)-273.15) smob = rs(k)*oams !..All other moments based on reference, 2nd moment. If bm_s.ne.2, !.. then we must compute actual 2nd moment and use as reference. if (bm_s.gt.(2.0-1.e-3) .and. bm_s.lt.(2.0+1.e-3)) then smo2 = smob else loga_ = sa(1) + sa(2)*tc0 + sa(3)*bm_s & & + sa(4)*tc0*bm_s + sa(5)*tc0*tc0 & & + sa(6)*bm_s*bm_s + sa(7)*tc0*tc0*bm_s & & + sa(8)*tc0*bm_s*bm_s + sa(9)*tc0*tc0*tc0 & & + sa(10)*bm_s*bm_s*bm_s a_ = 10.0**loga_ b_ = sb(1) + sb(2)*tc0 + sb(3)*bm_s & & + sb(4)*tc0*bm_s + sb(5)*tc0*tc0 & & + sb(6)*bm_s*bm_s + sb(7)*tc0*tc0*bm_s & & + sb(8)*tc0*bm_s*bm_s + sb(9)*tc0*tc0*tc0 & & + sb(10)*bm_s*bm_s*bm_s smo2 = (smob/a_)**(1./b_) endif !..Calculate bm_s+1 (th) moment. Useful for diameter calcs. loga_ = sa(1) + sa(2)*tc0 + sa(3)*cse(1) & & + sa(4)*tc0*cse(1) + sa(5)*tc0*tc0 & & + sa(6)*cse(1)*cse(1) + sa(7)*tc0*tc0*cse(1) & & + sa(8)*tc0*cse(1)*cse(1) + sa(9)*tc0*tc0*tc0 & & + sa(10)*cse(1)*cse(1)*cse(1) a_ = 10.0**loga_ b_ = sb(1)+ sb(2)*tc0 + sb(3)*cse(1) + sb(4)*tc0*cse(1) & & + sb(5)*tc0*tc0 + sb(6)*cse(1)*cse(1) & & + sb(7)*tc0*tc0*cse(1) + sb(8)*tc0*cse(1)*cse(1) & & + sb(9)*tc0*tc0*tc0 + sb(10)*cse(1)*cse(1)*cse(1) smoc = a_ * smo2**b_ re_qs1d(k) = MAX(25.E-6, MIN(0.5*(smoc/smob), 999.E-6)) enddo endif end subroutine calc_effectRad !+---+-----------------------------------------------------------------+ !..Compute radar reflectivity assuming 10 cm wavelength radar and using !.. Rayleigh approximation. Only complication is melted snow/graupel !.. which we treat as water-coated ice spheres and use Uli Blahak's !.. library of routines. The meltwater fraction is simply the amount !.. of frozen species remaining from what initially existed at the !.. melting level interface. !+---+-----------------------------------------------------------------+ subroutine calc_refl10cm (qv1d, qc1d, qr1d, nr1d, qs1d, qg1d, & t1d, p1d, dBZ, kts, kte, ii, jj) IMPLICIT NONE !..Sub arguments INTEGER, INTENT(IN):: kts, kte, ii, jj REAL, DIMENSION(kts:kte), INTENT(IN):: & qv1d, qc1d, qr1d, nr1d, qs1d, qg1d, t1d, p1d REAL, DIMENSION(kts:kte), INTENT(INOUT):: dBZ ! REAL, DIMENSION(kts:kte), INTENT(INOUT):: vt_dBZ !..Local variables REAL, DIMENSION(kts:kte):: temp, pres, qv, rho, rhof REAL, DIMENSION(kts:kte):: rc, rr, nr, rs, rg DOUBLE PRECISION, DIMENSION(kts:kte):: ilamr, ilamg, N0_r, N0_g REAL, DIMENSION(kts:kte):: mvd_r REAL, DIMENSION(kts:kte):: smob, smo2, smoc, smoz REAL:: oM3, M0, Mrat, slam1, slam2, xDs REAL:: ils1, ils2, t1_vts, t2_vts, t3_vts, t4_vts REAL:: vtr_dbz_wt, vts_dbz_wt, vtg_dbz_wt REAL, DIMENSION(kts:kte):: ze_rain, ze_snow, ze_graupel DOUBLE PRECISION:: N0_exp, N0_min, lam_exp, lamr, lamg REAL:: a_, b_, loga_, tc0 DOUBLE PRECISION:: fmelt_s, fmelt_g INTEGER:: i, k, k_0, kbot, n LOGICAL:: melti LOGICAL, DIMENSION(kts:kte):: L_qr, L_qs, L_qg DOUBLE PRECISION:: cback, x, eta, f_d REAL:: xslw1, ygra1, zans1 !+---+ do k = kts, kte dBZ(k) = -35.0 enddo !+---+-----------------------------------------------------------------+ !..Put column of data into local arrays. !+---+-----------------------------------------------------------------+ do k = kts, kte temp(k) = t1d(k) qv(k) = MAX(1.E-10, qv1d(k)) pres(k) = p1d(k) rho(k) = 0.622*pres(k)/(R*temp(k)*(qv(k)+0.622)) rhof(k) = SQRT(RHO_NOT/rho(k)) rc(k) = MAX(R1, qc1d(k)*rho(k)) if (qr1d(k) .gt. R1) then rr(k) = qr1d(k)*rho(k) nr(k) = MAX(R2, nr1d(k)*rho(k)) lamr = (am_r*crg(3)*org2*nr(k)/rr(k))**obmr ilamr(k) = 1./lamr N0_r(k) = nr(k)*org2*lamr**cre(2) mvd_r(k) = (3.0 + mu_r + 0.672) * ilamr(k) L_qr(k) = .true. else rr(k) = R1 nr(k) = R1 mvd_r(k) = 50.E-6 L_qr(k) = .false. endif if (qs1d(k) .gt. R2) then rs(k) = qs1d(k)*rho(k) L_qs(k) = .true. else rs(k) = R1 L_qs(k) = .false. endif if (qg1d(k) .gt. R2) then rg(k) = qg1d(k)*rho(k) L_qg(k) = .true. else rg(k) = R1 L_qg(k) = .false. endif enddo !+---+-----------------------------------------------------------------+ !..Calculate y-intercept, slope, and useful moments for snow. !+---+-----------------------------------------------------------------+ do k = kts, kte tc0 = MIN(-0.1, temp(k)-273.15) smob(k) = rs(k)*oams !..All other moments based on reference, 2nd moment. If bm_s.ne.2, !.. then we must compute actual 2nd moment and use as reference. if (bm_s.gt.(2.0-1.e-3) .and. bm_s.lt.(2.0+1.e-3)) then smo2(k) = smob(k) else loga_ = sa(1) + sa(2)*tc0 + sa(3)*bm_s & & + sa(4)*tc0*bm_s + sa(5)*tc0*tc0 & & + sa(6)*bm_s*bm_s + sa(7)*tc0*tc0*bm_s & & + sa(8)*tc0*bm_s*bm_s + sa(9)*tc0*tc0*tc0 & & + sa(10)*bm_s*bm_s*bm_s a_ = 10.0**loga_ b_ = sb(1) + sb(2)*tc0 + sb(3)*bm_s & & + sb(4)*tc0*bm_s + sb(5)*tc0*tc0 & & + sb(6)*bm_s*bm_s + sb(7)*tc0*tc0*bm_s & & + sb(8)*tc0*bm_s*bm_s + sb(9)*tc0*tc0*tc0 & & + sb(10)*bm_s*bm_s*bm_s smo2(k) = (smob(k)/a_)**(1./b_) endif !..Calculate bm_s+1 (th) moment. Useful for diameter calcs. loga_ = sa(1) + sa(2)*tc0 + sa(3)*cse(1) & & + sa(4)*tc0*cse(1) + sa(5)*tc0*tc0 & & + sa(6)*cse(1)*cse(1) + sa(7)*tc0*tc0*cse(1) & & + sa(8)*tc0*cse(1)*cse(1) + sa(9)*tc0*tc0*tc0 & & + sa(10)*cse(1)*cse(1)*cse(1) a_ = 10.0**loga_ b_ = sb(1)+ sb(2)*tc0 + sb(3)*cse(1) + sb(4)*tc0*cse(1) & & + sb(5)*tc0*tc0 + sb(6)*cse(1)*cse(1) & & + sb(7)*tc0*tc0*cse(1) + sb(8)*tc0*cse(1)*cse(1) & & + sb(9)*tc0*tc0*tc0 + sb(10)*cse(1)*cse(1)*cse(1) smoc(k) = a_ * smo2(k)**b_ !..Calculate bm_s*2 (th) moment. Useful for reflectivity. loga_ = sa(1) + sa(2)*tc0 + sa(3)*cse(3) & & + sa(4)*tc0*cse(3) + sa(5)*tc0*tc0 & & + sa(6)*cse(3)*cse(3) + sa(7)*tc0*tc0*cse(3) & & + sa(8)*tc0*cse(3)*cse(3) + sa(9)*tc0*tc0*tc0 & & + sa(10)*cse(3)*cse(3)*cse(3) a_ = 10.0**loga_ b_ = sb(1)+ sb(2)*tc0 + sb(3)*cse(3) + sb(4)*tc0*cse(3) & & + sb(5)*tc0*tc0 + sb(6)*cse(3)*cse(3) & & + sb(7)*tc0*tc0*cse(3) + sb(8)*tc0*cse(3)*cse(3) & & + sb(9)*tc0*tc0*tc0 + sb(10)*cse(3)*cse(3)*cse(3) smoz(k) = a_ * smo2(k)**b_ enddo !+---+-----------------------------------------------------------------+ !..Calculate y-intercept, slope values for graupel. !+---+-----------------------------------------------------------------+ N0_min = gonv_max do k = kte, kts, -1 if (temp(k).lt.270.65 .and. L_qr(k) .and. mvd_r(k).gt.100.E-6) then xslw1 = 4.01 + alog10(mvd_r(k)) else xslw1 = 0.01 endif ygra1 = 4.31 + alog10(max(5.E-5, rg(k))) zans1 = 3.1 + (100./(300.*xslw1*ygra1/(10./xslw1+1.+0.25*ygra1)+30.+10.*ygra1)) N0_exp = 10.**(zans1) N0_exp = MAX(DBLE(gonv_min), MIN(N0_exp, DBLE(gonv_max))) N0_min = MIN(N0_exp, N0_min) N0_exp = N0_min lam_exp = (N0_exp*am_g*cgg(1)/rg(k))**oge1 lamg = lam_exp * (cgg(3)*ogg2*ogg1)**obmg ilamg(k) = 1./lamg N0_g(k) = N0_exp/(cgg(2)*lam_exp) * lamg**cge(2) enddo !+---+-----------------------------------------------------------------+ !..Locate K-level of start of melting (k_0 is level above). !+---+-----------------------------------------------------------------+ melti = .false. k_0 = kts do k = kte-1, kts, -1 if ( (temp(k).gt.273.15) .and. L_qr(k) & & .and. (L_qs(k+1).or.L_qg(k+1)) ) then k_0 = MAX(k+1, k_0) melti=.true. goto 195 endif enddo 195 continue !+---+-----------------------------------------------------------------+ !..Assume Rayleigh approximation at 10 cm wavelength. Rain (all temps) !.. and non-water-coated snow and graupel when below freezing are !.. simple. Integrations of m(D)*m(D)*N(D)*dD. !+---+-----------------------------------------------------------------+ do k = kts, kte ze_rain(k) = 1.e-22 ze_snow(k) = 1.e-22 ze_graupel(k) = 1.e-22 if (L_qr(k)) ze_rain(k) = N0_r(k)*crg(4)*ilamr(k)**cre(4) if (L_qs(k)) ze_snow(k) = (0.176/0.93) * (6.0/PI)*(6.0/PI) & & * (am_s/900.0)*(am_s/900.0)*smoz(k) if (L_qg(k)) ze_graupel(k) = (0.176/0.93) * (6.0/PI)*(6.0/PI) & & * (am_g/900.0)*(am_g/900.0) & & * N0_g(k)*cgg(4)*ilamg(k)**cge(4) enddo !+---+-----------------------------------------------------------------+ !..Special case of melting ice (snow/graupel) particles. Assume the !.. ice is surrounded by the liquid water. Fraction of meltwater is !.. extremely simple based on amount found above the melting level. !.. Uses code from Uli Blahak (rayleigh_soak_wetgraupel and supporting !.. routines). !+---+-----------------------------------------------------------------+ if (.not. iiwarm .and. melti .and. k_0.ge.2) then do k = k_0-1, kts, -1 !..Reflectivity contributed by melting snow if (L_qs(k) .and. L_qs(k_0) ) then fmelt_s = MAX(0.05d0, MIN(1.0d0-rs(k)/rs(k_0), 0.99d0)) eta = 0.d0 oM3 = 1./smoc(k) M0 = (smob(k)*oM3) Mrat = smob(k)*M0*M0*M0 slam1 = M0 * Lam0 slam2 = M0 * Lam1 do n = 1, nrbins x = am_s * xxDs(n)**bm_s call rayleigh_soak_wetgraupel (x, DBLE(ocms), DBLE(obms), & & fmelt_s, melt_outside_s, m_w_0, m_i_0, lamda_radar, & & CBACK, mixingrulestring_s, matrixstring_s, & & inclusionstring_s, hoststring_s, & & hostmatrixstring_s, hostinclusionstring_s) f_d = Mrat*(Kap0*DEXP(-slam1*xxDs(n)) & & + Kap1*(M0*xxDs(n))**mu_s * DEXP(-slam2*xxDs(n))) eta = eta + f_d * CBACK * simpson(n) * xdts(n) enddo ze_snow(k) = SNGL(lamda4 / (pi5 * K_w) * eta) endif !..Reflectivity contributed by melting graupel if (L_qg(k) .and. L_qg(k_0) ) then fmelt_g = MAX(0.05d0, MIN(1.0d0-rg(k)/rg(k_0), 0.99d0)) eta = 0.d0 lamg = 1./ilamg(k) do n = 1, nrbins x = am_g * xxDg(n)**bm_g call rayleigh_soak_wetgraupel (x, DBLE(ocmg), DBLE(obmg), & & fmelt_g, melt_outside_g, m_w_0, m_i_0, lamda_radar, & & CBACK, mixingrulestring_g, matrixstring_g, & & inclusionstring_g, hoststring_g, & & hostmatrixstring_g, hostinclusionstring_g) f_d = N0_g(k)*xxDg(n)**mu_g * DEXP(-lamg*xxDg(n)) eta = eta + f_d * CBACK * simpson(n) * xdtg(n) enddo ze_graupel(k) = SNGL(lamda4 / (pi5 * K_w) * eta) endif enddo endif do k = kte, kts, -1 dBZ(k) = 10.*log10((ze_rain(k)+ze_snow(k)+ze_graupel(k))*1.d18) enddo !..Reflectivity-weighted terminal velocity (snow, rain, graupel, mix). ! do k = kte, kts, -1 ! vt_dBZ(k) = 1.E-3 ! if (rs(k).gt.R2) then ! Mrat = smob(k) / smoc(k) ! ils1 = 1./(Mrat*Lam0 + fv_s) ! ils2 = 1./(Mrat*Lam1 + fv_s) ! t1_vts = Kap0*csg(5)*ils1**cse(5) ! t2_vts = Kap1*Mrat**mu_s*csg(11)*ils2**cse(11) ! ils1 = 1./(Mrat*Lam0) ! ils2 = 1./(Mrat*Lam1) ! t3_vts = Kap0*csg(6)*ils1**cse(6) ! t4_vts = Kap1*Mrat**mu_s*csg(12)*ils2**cse(12) ! vts_dbz_wt = rhof(k)*av_s * (t1_vts+t2_vts)/(t3_vts+t4_vts) ! if (temp(k).ge.273.15 .and. temp(k).lt.275.15) then ! vts_dbz_wt = vts_dbz_wt*1.5 ! elseif (temp(k).ge.275.15) then ! vts_dbz_wt = vts_dbz_wt*2.0 ! endif ! else ! vts_dbz_wt = 1.E-3 ! endif ! if (rr(k).gt.R1) then ! lamr = 1./ilamr(k) ! vtr_dbz_wt = rhof(k)*av_r*crg(13)*(lamr+fv_r)**(-cre(13)) & ! & / (crg(4)*lamr**(-cre(4))) ! else ! vtr_dbz_wt = 1.E-3 ! endif ! if (rg(k).gt.R2) then ! lamg = 1./ilamg(k) ! vtg_dbz_wt = rhof(k)*av_g*cgg(5)*lamg**(-cge(5)) & ! & / (cgg(4)*lamg**(-cge(4))) ! else ! vtg_dbz_wt = 1.E-3 ! endif ! vt_dBZ(k) = (vts_dbz_wt*ze_snow(k) + vtr_dbz_wt*ze_rain(k) & ! & + vtg_dbz_wt*ze_graupel(k)) & ! & / (ze_rain(k)+ze_snow(k)+ze_graupel(k)) ! enddo end subroutine calc_refl10cm ! !+---+-----------------------------------------------------------------+ !+---+-----------------------------------------------------------------+ END MODULE module_mp_thompson !+---+-----------------------------------------------------------------+