% Script to generate domain "terrain-mapped" cross section from WRF output
% % Erik M Neemann
% 7 April 2014

clear all;
[bookmark: _GoBack]close all;
clc;

% General Notes:
% - This script plots the zonal wind component for a west-east cross section
% in the Uintah Basin, UT
% - Data is time-averaged from wrfout files at 6-hour intervals that
% contain 6 times each (hourly data). Total data in this example spans 145
% hours from 0000 UTC 1 Feb to 0000 UTC 7 Feb 2013 (inclusive)
% - Data is also spatially averaged along a customizable number of
% gridpoints perpendicular to the centerline of the cross section in either
% direction (originally 10 gridpoints on each side; width = 10).
% - Depth of the cross section is also customizable (originally 25 model
% levels). If deeper than 5000 m, code will need to be modified
% - ps2pdf function needed in matlab directory to create multi-page pdf
% download from http://www.mathworks.com/matlabcentral/fileexchange/19516-ps2pdf

%% Average U Wind Cross Sections

% path to location of wrfout files
% FULL Simulation - Full Basin snow, modified Thompson microphysics
path1 = '/uufs/chpc.utah.edu/common/home/horel-group2/eneemann/Uintah_Basin_Runs/WRFv3.5/Feb_2013_snow_TIN12IAU0T/wrfout_d03_2013-02';

% Define an array with the times to include in the time average.
% The format is ['-dd_hh:mm:ss';'-dd_hh:mm:ss';'-dd_hh:mm:ss']. When the loop below
% concatenates path and times it must result in a string that creates the full
% path and filename of each wrfout file.
% The loop below will read and manipulate a variable from the wrfout netcdf
% at each time included in the array.
times = ['-01_00:00:00'; '-01_06:00:00'; '-01_12:00:00';...
 '-01_18:00:00';...
 '-02_00:00:00'; '-02_06:00:00'; '-02_12:00:00';...
 '-02_18:00:00';...
 '-03_00:00:00'; '-03_06:00:00'; '-03_12:00:00';...
 '-03_18:00:00';...
 '-04_00:00:00'; '-04_06:00:00'; '-04_12:00:00';...
 '-04_18:00:00';...
 '-05_00:00:00'; '-05_06:00:00'; '-05_12:00:00';...
 '-05_18:00:00';...
 '-06_00:00:00'; '-06_06:00:00'; '-06_12:00:00';...
 '-06_18:00:00'; '-07_00:00:00'];

% calculate # of wrfout files to loop through
numtimes = length(times(:,1));

% Loop through each time to load U wind data and create an array with
% hourly data for all 145 hours
% For my example, the last file only contains 1 hour of data. So I
% leavethat file out from this loop and simply place it in the final
% position in the array after the loop.
for i = 1:numtimes-1;

 % Generate complete data file path/filename for each wrfout file
 string1 = [path1 times(i,:)];

 % ncread uses the strings from above to read a wrfout 3d array
 % my wrfouts are set up to have 6 hours per file
 % --> this adds a dimension to the array making it 4d
 % since U is actually 4d it reads in (i_pts, j_pts, k_pts, hours)

 U = double(ncread(string1,'U'));

 % U is now 298x321x41x6 (i_pts, j_pts, k_pts, hours).
 % We want to merge data into one large array that will be 298x321x41x145
 % with a value for each grid point x 145 hours

 % calculate 4th dimension indicies for each file to be slotted into the
 % correct position in the array with hourly data
 z1 = (i-1)*6+1; %first index
 z2 = (i-1)*6+6; %last index
 % add the files' six 1-hour times into appropriate position, based on
 % indicies calculated above
 U_hrly_all(:,:,:,z1:z2) = U;

end

% now load last single hour to tack on end of array in last position
 string1b = [path1 times(25,:)]; %string for last hour
 Ub = double(ncread(string1b,'U'));
 U_hrly_all(:,:,:,145) = Ub;

% load PH & PHB: needed to calculate geopotential height later on...
 PH = double(ncread(string1,'PH')); % perturbation geopotential
 PHB = double(ncread(string1,'PHB')); % base state geopotential

% take mean along 4th dimension to get time average for all 145 hours
% data will be reduced to i_pts by j_pts by k_pts (298x321x41)
U_tavg_all = mean(U_hrly_all,4);

% load elevation to plot on domain in figure 1
HGT = double(ncread(string1,'HGT'));
HGT = HGT(:,:,1); % only use 1st hour
HGT_conts = [1000:250:3500]; % create contour intervals for plotting

%% Create Cross Section - edit this block to change equation, start, end, depth, and width

% cut cross section at angle using following equation:
x = 1:length(U(:,1,1,1)); % x is # of gridpoints in i direction
slope = -.1411
yintercept = 184.44
y = slope*x + yintercept; % centerline of cross section
% equation above derived from i,j gridpoints in wrf output (use ncview,
% RIP, etc. to help you pick points)
% insert slope & yintercept from your line equation

% Select cross section start/end in i direction gridpoints, depth in model
% layers, and width in gridpoints
crsa = 74; % i gridpoint at start of xsection (point "a")
crsb = 237; % i gridpoint at end of xsection (point "b")
depth = 25; % in model levels
width = 10; % # of grid points on each side of centerline (perpendicular to xsection)
% NOTE: to do a xsection that's only 1 gridpoint wide, set width = 0

ystart = slope*x + yintercept - width; %bottom of rectangle to be plotted on map as a check for location
yend = slope*x + yintercept + width; %top of rectangle to be plotted on map as a check for location

%% Cut Cross Section through 3d domain

% get PH & PHB data from 1st hour - this will be used for all hours
PH_1hr = PH(:,:,:,1);
PHB_1hr = PHB(:,:,:,1);

% preallocate arrays of NaNs for data that will be taken along xsection
% 2nd dimension is total width of xsection, 1 is added to include centerline
U_tavg_angled = NaN(length(U(:,1,1,1)-1),(2*width+1),length(U(1,1,:,1)));
PH_tavg_angled = NaN(length(PH_1hr(:,1,1,1)-1),length(PH_1hr(1,1,:,1)));
PHB_tavg_angled = NaN(length(PHB_1hr(:,1,1,1)-1),length(PHB_1hr(1,1,:,1)));

% pull data along xsection using equation from previous block
% U data has width, so resulting array is 3d rectangle along xsection
for X = 1:length(U(:,1,1,1))-1;
 for Z = 1:length(U(1,1,:,1));
 U_tavg_angled(X,:,Z) = U_tavg_all(X,(int64(slope*X + yintercept-width)):(int64(slope*X + yintercept+width)),Z);
 % only centerline is used for PH/PHB in geopotential calculation,
 % so resulting array is 2d rectangle
 PH_tavg_angled(X,Z) = PH_1hr(X,(int64(slope*X + yintercept)),Z);
 PHB_tavg_angled(X,Z) = PHB_1hr(X,(int64(slope*X + yintercept)),Z);
 end
end

% take spatial average along the width of the xsection (2nd dimension)
U_tavg_xavg_angled = mean(U_tavg_angled,2); % result is 2d array

% trim down array to specified depth and gridpoints (crsa:crsb)
% result is 2d array along xsection (i_pts by depth)
U_tavg_trim_depth = U_tavg_xavg_angled(crsa:crsb,1:depth);
%% Check that cross section is correct and build colormap

% plot elevation data, xsection centerline and bounds used for gridpoint
% averaging to make sure they are in the right location
figure(1)
contourf(HGT,HGT_conts); % plot terrain in grayscale
colormap(flipud(gray));
hold on;
plot(y(crsa:crsb),x(crsa:crsb),'r','LineWidth',3) %plot xsection centerline
plot(ystart(crsa:crsb),x(crsa:crsb),'r','LineWidth',1) %plot bottom bound of spatial avg
plot(yend(crsa:crsb),x(crsa:crsb),'r','LineWidth',1) %plot top bound of spatial avg
colorbar;
set(gca,'view',[90 -90]) %rotate to view from correct orientation
hold off;
% make all text in the figure to size 12 and bold
set(gca,'FontSize',12,'fontWeight','bold')
set(findall(gcf,'type','text'),'FontSize',12,'fontWeight','bold')
% set orientation of .ps output
h=gcf;
set(h,'PaperOrientation','landscape');
set(h,'PaperUnits','normalized');
set(h,'PaperPosition', [0 0 1 1]);
print -dpsc2 -r600 input1; %create .ps file

%create blue to red colormap (only 19 divisions) for shading U winds
blue_to_red = zeros(19,3);
blue_to_red(1,:) = [0 0 1]; %blue
blue_to_red(1:10,3) = 1;
B1to49 = linspace(0,1,10)'; %fade to white (0 to 1)
blue_to_red(1:10,1) = B1to49; %apply to "red"
blue_to_red(1:10,2) = B1to49; %apply to "green"
blue_to_red(10,:) = [1 1 1]; %white
G51to99 = linspace(1,0,10)'; %fade from white (1 to 0)
blue_to_red(10:19,2) = G51to99; %apply to "green"
blue_to_red(10:19,3) = G51to99; %apply to "blue"
blue_to_red(10:19,1) = 1;
blue_to_red(19,:) = [1 0 0]; %red
%end colormap creation

%% Calculate correct geopotential height along xsection

GEO_angled = PH_tavg_angled + PHB_tavg_angled; % sum for total geopotential (at bottom of gridbox)

Z = GEO_angled./9.81; % height is geopotential divided by gravity (height at bottom of gridbox)

% loop through data to calculate mid-model heights (where U variable lives) in meters
Z_cor = NaN(size(Z));
for n = 1:length(Z(:,1));
 for z = 1:length(Z(1,:))-1;
 Z_cor(n,z) = (Z(n,z) + Z(n,z+1))/2;
 end
end

% trim down array to specified depth and gridpoints (crsa:crsb)
Z_fix_trim_depth_m = Z_cor(crsa:crsb,1:depth);

%% Map data to Terrain and Interpolate between model data
% This is where things start to get complicated. In order to map the data
% to the terrain, we have to find the height at each gridpoint (X) and
% each model level (Z). Then we will plot this data to a very large array where
% each vertical level represents 1 m. The model data will only be ploted on
% the level closest to it's actual height. Example: If the height of point
% (100,7) in the xsection X-Z plane is 1651.3 m, it will only be plotted at
% the point (100,1651) in our new array. Then we loop thru the data and
% linearly interpolate between these data points for each vertical column.

% allocate array to map data to terrain, and fill it with NaNs
terrain_mapped_tavg = NaN(crsb-crsa,5000); % capping xsection at 5000 m since I'm interested in lower atmosphere

% create array with only data filled at model level heights and NaNs everywhere else
for r = 1:length(U_tavg_trim_depth(:,1)); % step along xsection direction
 for s = 1:length(U_tavg_trim_depth(1,:)); % step along vertical direction
 % apply U value at (r,s) to (r,height(r,s)) in new array
 terrain_mapped_tavg(r,int64((Z_fix_trim_depth_m(r,s)))) = U_tavg_trim_depth(r,s);
 end
end

% create another array to hold "fixed" data after interpolation
terrain_mapped_fix_tavg = terrain_mapped_tavg;

%% Build placeholder array to aid interpolation

% create "placeholder" array that will be used to help interpolation, fill
% it with 0s and make depth 5000 meters
placeholder = zeros(crsb-crsa,5000);

placelow = 0;
% loop for tavg
for a = 1:length(terrain_mapped_tavg(:,1)); %step thru horizontal
 for b = 1:length(terrain_mapped_tavg(1,:)); %step thru vertical
 % 1st pass:
 % if slot on model level filled, placelow becomes that model level (placeholder)
 if isnan(terrain_mapped_tavg(a,b)) == 0 && placelow == 0;
 placelow = b;
 placeholder(a,b) = b;
 continue % go to next step in for loop
 else
 end
 % all subsequent passes:
 % if model level is above placeholder and unfilled, nothing happens
 if placelow ~= 0 && b > placelow && isnan(terrain_mapped_tavg(a,b)) == 1;
 % if model level is filled (& above old placeholder), it becomes new placholder
 else
 placelow = b;
 placeholder(a,b) = b;
 end
 end
end
% array is now filled with model height only at model height, rest is 0s
placeholder(:,1) = 0; % set lowest level to 0
placeholder((crsb-crsa)+1,:) = 0; % make last column 0

% collapse placeholder array by removing 0s from each column
placeholder_fix = zeros(crsb-crsa,depth);
for a = 1:crsb-crsa; %step horizontally
 place_a = placeholder(a,:); %grab column at point a
 place_a(place_a==0)=[]; %remove 0s in column (make them blanks)
 placeholder_fix(a,:) = place_a; %place collapsed column into the "fixed" array
end

%check to see if zeros removed from placeholder...they are!

%% Linearly Interpolate in the vertical
% given placeholder matrix exists without zeros, use to interpolate
for a = 1:length(terrain_mapped_tavg(:,1))-1; %step thru horizontal
 l = 1;
for b = 1:length(terrain_mapped_tavg(1,:)); %step thru vertical
 if l > (depth-1);
 placehigh = 5000;
 else
 placelow = placeholder_fix(a,l);
 placehigh = placeholder_fix(a,l+1);
 end
 if b > 1 && isnan(terrain_mapped_tavg(a,b)) == 1 && b > placelow && b < placehigh;
 % this code replaces the NaNs with interpolated values in between the
 % model levels (when b is between placelow and placehigh)
 terrain_mapped_fix_tavg(a,b) = ((b-placelow)/(placehigh-placelow))*(terrain_mapped_tavg(a,placehigh)) +...
 (1 - ((b-placelow)/(placehigh-placelow)))*(terrain_mapped_tavg(a,placelow));
 else if b > 1 && isnan(terrain_mapped_tavg(a,b)) == 0 && b > placelow;
 l = l+1; % raise placelow for next vertical step if b > placelow
 else %retain values on model levels from original array
 terrain_mapped_fix_tavg(a,b) = terrain_mapped_tavg(a,b);
 end
 end
end
end

% loop back thru entire array...if 0s exist, replace with avg of cells above/below
for a = 1:length(terrain_mapped_tavg(:,1))-1; %step thru horizontal
for b = 1:length(terrain_mapped_tavg(1,:))-1; %step thru vertical
 if b > placeholder_fix(a,1) && terrain_mapped_fix_tavg(a,b) == 0; %find 0s
 %replace with avg of cells above/below
 terrain_mapped_fix_tavg(a,b) = (terrain_mapped_fix_tavg(a,b-1)+terrain_mapped_fix_tavg(a,b+1))/2;
 end
end
end

%NaNs remain for all cells in the array that are below the model terrain

%% Not sure if this is still needed with interpolation method...
%Uncomment the loop below, if you are getting errors at the top of your
%plotted cross section

% Pass through data array final time to place NaNs above last model level.
% This prevents last model level data from getting stretched to top of
% plot. Shouldn't be needed, now that interpolation is used in place of
% the original scheme which filled the last model level data upward to the
% top of the array.

% c = 0;
% % loop for tavg
% for a = 1:length(terrain_mapped_tavg(:,1)); %step thru horizontal
% for b = 1:length(terrain_mapped_tavg(1,:)); %step thru vertical
% if isnan(terrain_mapped_tavg(a,b)) == 0
% c = b; % c ends up being highest model level data
% else
% end
% end
% for b = 1:length(terrain_mapped_tavg(1,:)); %step thru vertical
% if b > (c+40); %more than 40 m above last model level data
% terrain_mapped_fix_tavg(a,b) = 0; %NaN
% else
% end
% end
% end

%% Create Terrain Outline
% create new array that will be used to outline terrain
terrain = terrain_mapped_fix_tavg;

%Loop through array, find NaNs below the the model terrain, and replace
%them with -9999. We'll later plot a contour at -50 that will outline the
%terrain since all cells with real data are > -50 and all cells below model
%terrain are < -50 because they will be -9999
for i = 1:length(terrain(:,1)); %step thru horizontal
 for j = 1:length(terrain(1,:)); %step thru vertical
 if isnan(terrain(i,j)) == 1 %if cell is a NaN, replace with -9999
 terrain(i,j) = -9999;
 else
 continue
 end
 end
end
tercont = [-50 -50];

%% Plot Final Cross Section
windconts = [-2 -1 -0.5 0 2 4 6 8]; % set contours for U wind speed
xwidth = crsb-crsa;
figure(2)
colormap(blue_to_red);
contourf(terrain_mapped_fix_tavg,100,'LineStyle','none');
hold on;
contour(terrain_mapped_fix_tavg,windconts,'k','LineWidth',1);
axis([1400 3000 0 xwidth]); % set vertical/horizontal data ranges
colorbar;
caxis([-5 5]); % set constant colorbar range (must center on 0)
contour(terrain,tercont,'k','LineWidth',2); % thick contour of terrain outline
set(gca,'view',[90 -90]) %rotate to view correct orientation
title({'Time Averaged U-Wind Cross Section (m/s)','Full Snow'},'FontSize',12,'FontWeight','bold');
xlabel('Height (m)','FontSize',12,'FontWeight','bold');
ylabel('East-West Gridpoints','FontSize',12,'FontWeight','bold');
% make all text in the figure to size 12 and bold
set(gca,'FontSize',12,'fontWeight','bold')
set(findall(gcf,'type','text'),'FontSize',12,'fontWeight','bold')
% set orientation of .ps output
h=gcf;
set(h,'PaperOrientation','landscape');
set(h,'PaperUnits','normalized');
set(h,'PaperPosition', [0 0 1 1]);
print -dpsc2 -r600 input1 -append; %append to .ps file

% use ps2pdf function to create multi-page pdf file from .ps file
ps2pdf('psfile', 'input1.ps', 'pdffile', 'xsect_wind.pdf', 'gspapersize', 'letter', 'deletepsfile', 1);

