
PARALLEL-DISTRIBUTED, REVERSE

MONTE-CARLO RADIATION IN COUPLED, LARGE

EDDY COMBUSTION SIMULATIONS

by

Isaac L. Hunsaker

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Chemical Engineering

The University of Utah

November 2013

Copyright c© Isaac L. Hunsaker 2013

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF THESIS APPROVAL

The dissertation of Isaac L. Hunsaker
has been approved by the following supervisory committee members:

David S. Chapman , Chair enter date

Date Approved

Throw this page away and use print out ThesisChildren/SupervisoryApproval.pdf in its
place , Member

Date Approved

First M. Last , Member

Date Approved

ABSTRACT

Radiation is the dominant mode of heat transfer in high temperature combustion en-

vironments. Radiative heat transfer affects the gas and particle phases, including all

the associated combustion chemistry. The radiative properties are in turn affected by

the turbulent flow field. This bi-directional coupling of radiation turbulence interactions

poses a major challenge in creating parallel-capable, high-fidelity combustion simulations.

In this work, a new model was developed in which reciprocal monte-carlo radiation was

coupled with a turbulent, large-eddy simulation combustion model. A patch re-composition

technique was implemented to allow for scalable parallelism. The combustion model runs in

parallel on a decomposed domain. The radiation model runs asynchronously in parallel on a

recomposed domain. The recomposed domain is stored on each processor after information

sharing of the decomposed domain is handled via the message-passing interface. Verification

and validation testing of the new radiation model were favorable. The monte-carlo radiation

model that was written for use on CPU-based computers was translated into a GPU-specific

language. Strong scaling analyses were performed on the Ember cluster and the Titan

cluster for the CPU-radiation model and GPU-radiation model, respectively. The model

demonstrated strong scaling to over 1,700 and 16,000 processing cores on Ember and Titan,

respectively.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vii

LIST OF TABLES . x

ACKNOWLEDGMENTS . xiii

CHAPTERS

1. INTRODUCTION . 1

1.1 Literature Review . 1
1.1.1 General Radiation Transport . 1
1.1.2 History of the Monte-Carlo Method . 3
1.1.3 Other Numerical Radiation Methods . 4
1.1.4 Parallel Ray Tracing . 5
1.1.5 Previous Work in RMCRT By Paula Sun . 7

1.2 Research Objectives . 8
1.3 Expected significance . 9
1.4 Broad description of modeling . 9
1.5 Components and Architecture . 9

2. MODEL DESCRIPTION . 11

2.1 Model Description . 12
2.1.1 Scope . 14
2.1.2 Parallel RMCRT . 17
2.1.3 Adaptive Focus Mesh Refinement . 20
2.1.4 Function Abstraction . 21
2.1.5 GPU implementation . 21

3. RAY TRACING . 22

3.1 Ray Marching Algorithm . 23
3.1.1 Cubic Cells . 23
3.1.2 Non-cubic Cells . 26
3.1.3 Multiple Levels . 30
3.1.4 Determining When a Ray Leaves the Domain . 36
3.1.5 Stopping Criteria . 37
3.1.6 Intrusion Cells . 39
3.1.7 Reflections . 42
3.1.8 Verification Testing of the Reflection Condition 46
3.1.9 Scattering . 51

4. FLUX CALCULATIONS . 56

4.1 Explanation of Boundary Fluxes . 57
4.2 Generating Rays on a Hemisphere. 57
4.3 Rotating Rays Onto a Hemisphere . 57
4.4 Shifting the Rays To a Cell Face . 58
4.5 Flux Ray Tracing and Weighting of Rays . 61
4.6 Ray Convergence Analysis . 61
4.7 Storage . 64
4.8 Volumetric Integral Vs Surface Integral . 66

5. COUPLING THROUGH THE ENTHALPY EQUATION 73

6. RADIATION PROPERTIES . 75

6.1 Spectral Properties . 76
6.2 Hottel Properties . 79

7. PARALLEL CONSIDERATIONS . 84

7.1 Turbulent Radiation Interactions . 85
7.2 Parallelism and Load Balancing . 87
7.3 Adaptive Focus Mesh Refinement . 90

8. VIRTUAL RADIOMETER MODEL . 92

8.1 Virtual Radiometer Model . 93
8.2 Introduction . 94
8.3 Difficulty of modelling radiometers within a computational framework 95
8.4 Governing equations of radiation in participating media 95
8.5 User-specified view angle and orientation . 98

8.5.1 User-specified view angle . 98
8.5.2 User-specified orientation . 101

8.6 Ray marching in unstructured meshes . 102
8.7 Verification and validation . 103

8.7.1 Verification of ray distribution . 103
8.7.2 Verification of participating media physics . 103
8.7.3 Verification of ray convergence . 105
8.7.4 Validation . 107

8.8 Efficiency considerations . 109
8.8.1 Differences between Uintah Radiometer and Sandia Radiometer 109

9. IFRF CASE STUDY . 113

9.1 IFRF case study . 114
9.1.1 Fluxes . 116
9.1.2 Timing and accuracy . 116

9.2 IFRF f85y4 case study . 116
9.3 Filtering . 120

10. SUMMARY AND CONCLUSIONS . 121

APPENDICES

v

A. AMDAHL’S LAW . 123

B. IFRF F85Y4 OXYFLAM1B UPS INPUT FILE . 124

REFERENCES . 136

vi

LIST OF FIGURES

3.1 First step in a cubic cell . 28

3.2 First step in a non-cubic cell with Dy
Dx = 2 . 29

3.3 Multi-level mesh. The processor owns the fine mesh information indicated
by the red square, and is passed coarsened versions of the mesh for regions
outside of the local extents. 31

3.4 The segment length of the first step in a new level is a function of the location
of the fine cell of interest relative to the coarser cell. 33

3.5 This algorithm computes the tMax values for the first step in a new level.
sign[ii] returns true if that component of the direction vector is positive.
At this point in the algorithm, L has not yet been updated, and therefore
represents the previous level. 35

3.6 Specular reflection about the surface normal, N . Note that Ry = −Iy. 44

3.7 Reflection ray marching. This figure demonstrates that the values of Tmax
and TDelta need not be adjusted after a reflection. The x and y faces are
breached in the same order even after a reflection. For example, after the ray
has reached the first non-black boundary, indicated by point A, the following
breach occurs at a y face as shown both at point B and point Br. Subsequently,
there is another reflection at point Br followed by an x breach both at points
C and Cr. 44

3.8 Exact solution for the radiative-flux divergence compared to RMCRT with
1000 rays and 413 cells for Modest’s Benchmark case 13.2. 48

3.9 Exact solution for the radiative-flux divergence compared to RMCRT with
100,000 rays and 413 cells for Modest’s Benchmark case 13.2. 48

3.10 Convergence rate of the L2 error norm of RMCRT on benchmark 13.2 as a
function of ray number from 1 to one million rays. The blue circles represent
the L2 error norms from RMCRT data with a ray threshold of 10−3 on a grid of
413 cells. The red line is a curve fit of these norms. The pink circle represents
the L2 error norm of RMCRT with N=1,000,000 rays and a threshold of 10−4.
The red circle represents the L2 error norm of RMCRT with N=1,000,000 and
a threshold of 10−4, but on a grid of 1013 cells. 50

3.11 Computed and analytical surface fluxes along the bottom plate of the case
described by Siegel at varying optical thicknesses, and scattering albedo. 54

4.1 A hexahedron with its 6 faces labeled. 60

4.2 Ray convergence for Boundary Fluxes. 62

4.3 RMCRT vs. Burns’ converged solution at 10M rays. 62

4.4 RMCRT vs. Burns’ converged solution at 100k rays. 63

4.5 RMCRT vs. Burns’ converged solution at 1,000 rays. 63

4.6 Invariability of the L1 error norm of the fluxes as a function of direction for
the symmetric Burns and Christon case. 63

4.7 Ordering of the 12 face normals of a hexahedron. 68

4.8 Grid convergence of the 12-flux method of computing the flux divergence.
Note the positive slope indicating growing error with finer mesh resolutions. . 69

4.9 Grid convergence analysis of the 6-Flux method of benchmark1. Grids of size
33, 93, 273,413, and 813 were analyzed. The L1 error norm decreases with
mesh refinement at an approximately first order rate. 72

6.1 Digitized data of the real component of the refractive index of ash with 5.47
percent hematite. 78

6.2 Digitized data of the imaginary component of the refractive index of ash with
5.47 percent hematite. 78

6.3 Hottel-Sarofim absorption coefficients produced through the RMCRT inter-
face(blue) and DOM interface (green) at timestep 1. 80

6.4 Hottel-Sarofim absorption coefficients produced through the RMCRT inter-
face(blue) and DOM interface (green) at timestep 10. 81

6.5 Hottel-Sarofim absorption coefficients produced through the RMCRT interface
and DOM interface at timestep 100. 82

6.6 Hottel-Sarofim absorption coefficients produced through the RMCRT interface
and DOM interface at timestep 100, with values clipped at 0.5 to allowing
viewing of the smaller values. 83

7.1 Strong scaling of the reciprocal monte carlo radiation model performed on the
Titan GPU cluster. 89

7.2 Strong scaling analysis of RMCRT on 8 to 1728 processors using 100 rays per
cell on a domain of 1503. on the Titan GPU cluster. 89

7.3 Fine CFD mesh on which the fluid/particle equations are solved (left). Single
level, asynchronous mesh at a coarser level for the radiation physics (center).
Multi-level, adaptive-focus mesh, a.k.a Data Onion (right). 91

7.4 RMCRT with Adaptive Focus Mesh Refinement compared with the Burns and
Christon numerical solution. 91

8.1 simple schematic indicating δθ. the view angle of the radiometer is 2δθ. 96

8.2 With current radiation solvers,the radiometer at location “a” would register
an under-predicted flux whereas the radiometer at location “b” would over-
predict the incident flux. 96

8.3 The ray effect is visible in this cutaway that shows the spatially varying
radiative flux of a simulation of a propellant fire. 97

viii

8.4 Random numbers that vary uniformly with the polar angle produce incorrectly
distributed points clustered near the poles as shown in (a). Random numbers
appropriately weighted by the polar angle produce points that are correctly
distributed (b). 99

8.5 Distributing random points on a sphere requires the scaling by arccosine of
the random number R, where R = 2R2 − 1, such that R has a range of -1 to 1. 100

8.6 Schematic representation of the view factor of a circular disk as viewed by a
point at the bottom of a cylinder. 104

8.7 absorption coefficient as specified in the case described by Burns and Christon
[1]. 106

8.8 Results of the participating media physics verification test. The virtual ra-
diometer model demonstrates excellent agreement with the numerically-exact
solution. 106

8.9 L2 error norm as a function of ray number, using the converged solution of
1.4M rays to compute relative error. The solution converged at the expected
order of approximately −1

2 . 108

8.10 Convergence of the virtual radiometer results relative to the quasi-exact solu-
tion [1]. 108

8.11 Validation results indicate good agreement between the experimental results
(black bars) and model results at varying emissivities (dots). 108

8.12 Radiative-flux divergence along a center-line of Burn’s benchmark case. Two
runs were made using the Sandia virtual radiometer using a segment length
of 1 cm (Sandia) and 1mm (Sandia Fine). Four runs were made using the
Arches radiometer using grid resolutions of 1013, 2013, 3013, and 4013. 111

8.13 Grid convergence analysis for U of U virtual radiometer. 112

9.1 Radiative flux divergence from RMCRT (+) and DOM (line) on a z-line
through an x-y slice in the center of the domain of an IFRF case. RMCRT
used 50 rays per cell, DOM used SN8 in this case. 115

9.2 Radiative flux divergence for several RMCRT cases and a DOM SN8 case
(hollow circle) on a z-line through an x-y slice in the center of the domain of
an IFRF case. The three RMCRT cases are respectively, 1 ray per cell with
reflections and an emissivity of 0.5 (line) 10 rays per cell with an emissivity of
0.5 without reflections (dot) and 10 rays with black walls (dash). 117

9.3 Radiative flux as calculated by RMCRT (lines) vs. DOM (+) for varying
positions along the z direction of a center-line through the boiler. 117

9.4 Filtered solution of the radiative flux as calculated by RMCRT(lines) vs.
DOM(+) for varying positions along the z direction of a center-line through
the boiler. 118

9.5 Boiler configuration of the IFRF f85y4 oxyflam 1 case. 118

9.6 Burner geometry of the IFRF f85y4 oxyflam 1B case. 119

ix

LIST OF TABLES

3.1 For positive components of the direction vector, mapping is shown of the
modulus of the index to a factor that will scale the tDelta values. 33

3.2 For negative components of the direction vector, mapping is shown of the
modulus of the index to a factor that will scale the tDelta values. 33

4.1 Reordering of indices for adjustment of ray direction and origin location as a
function of cell face. Also shown are the values that allow for location shift
and direction sign change. 59

4.2 Time comparison to create and run std::map vs Uintah’s CC Variables. 65

4.3 Signs of each of the incident and outgoing faces of a cube. 68

9.1 Timing and accuracy of RMCRT and DOM SN8 . 118

NOMENCLATURE

E = Exact Solution
R = Uniformly distributed random number
L = Length of one side of a cube
ε = Statistical error
σ2 = Statistical variance
Ω = Solid Angle
Q3 = 3rd Quadrant of a 2D Cartesian Grid
Q4 = 4th Quadrant of a 2D Cartesian Grid
A = Rotation matrix
~b = x,y,z coordinates rotated into the appropriate orientation
~x = x,y,z coordinates prior to rotation into the appropriate orientation
θ = Radiometer rotation angle about the y axis
φ = Radiometer rotation angle about the x axis
ξ = Radiometer rotation angle about the z axis
θv = Radiometer View Angle
θr = Ray polar angle
φr = Ray azimuthal angle
ir = Ray index number
l = A point along a ray
T = Temperature
N = Number of rays traced per cell
q = Radiative flux
I = Radiative Iintensity
κ = Absorption coefficient
~n = Radiometer normal vector
M = Number of discretized segment lengths of the ray
f = Unity minus the fraction of intensity attenuated by all previous wall reflections
τ = Optical thickness
α = Absorptivity
G = Incident radiation function
σs = Scattering coefficient
Φ = Scattering phase function
s = Pre-scattering direction vector
s′ = Post-scattering direction vector

SUBSCRIPTS

i = Incident
b = Black body
o = Outgoing
w = Wall
n = Net
r = Ray
cv = Control Volume
sur = Surface

xi

ABBREVIATIONS

TRI = Turbulent Radiation Interactions
DivQ = Radiative Flux Divergence
RMCRT = Reverse Monte Carlo Ray Tracing
DOM = Discrete Ordinates Method
LES = Large Eddy Simulation
GPU = Graphics Processing Unit
CPU = Central Processing Unit
SN4 = 24-direction DOM
SN8 = 80-direction DOM
FSK = Full spectrum k-distribution property model
RHS = Right hand side
RNG = Random number generator
IFRF = International Flame Research Foundation

xii

ACKNOWLEDGMENTS

It is only because of the tremendous amount of help I have received from friends and

colleagues that I was able to complete this work. I would first like to thank my advisor,

Professor Philip J. Smith, for his support and encouragement. Dr. Smith’s energy and

optimism created an environment that was condusive to creativity and productivity. His

interest and concern for his students’ welfare are indicative of his sincerity as a manager

and friend.

Dr. Jeremy Thornock was a true mentor to me, giving guidance in areas ranging from

Unix tips to writing philosophy. During his stay in the United Kingdom, he still made time

to collaborate with me, even at odd hours of the night.

Dr. Todd Harman performed the work that made scaling of RMCRT possible.

Dr. Tony Saad introduced me to the multi-platform program “Inkscape” which greatly

enhanced the quality of my graphics. He was always willing to lend an eye to help track

down code bugs.

Dr. Charles Reid was active in helping me get up to speed in the world of high perfor-

mance computing, and even provided a well-documented template for this dissertation.

The work of this dissertation is built upon the work of many others, most notably, the

prior graduate student Dr. Xiaoxing (Paula) Sun. Many of the concepts of ray tracing I

learned from her thesis and from communication via telephone and email.

Dr. Steven Parker’s wisdom in ray tracing efficiency has been invaluable. His insight

into parallel ray tracing schemes aided in solving the dilemmas inherent to extreme scaling.

I owe thanks to Dr. Mathieu Francoeur who taught an advanced radiation course in a

manner that helped elucidate many complex topics.

Lyubima Simeonova performed the work that allowed for the discretization of spectral-

radiation properties.

I would like to thank Professor James Sutherland for his help in ensuring the efficiency

of my model as well as his help in implementing the models developed by Ms. Simeonova.

Dr. Sean Smith was always willing to lend an ear when I needed to sound out my

thoughts. He was also instrumental in the formulation of statistical analyses for various

tests.

This work would not have been possible without the support of the Center for High

Performance Computing at the University of Utah.

This research was made possible by generous grants from the National Nuclear Security

Administration under the Advanced Simulation and Computing program through DOE

Research Grant # DE-NA0000740 and DE-NT0005015.

Finally, I wish to thank my wife Emily, and our two sons, Jayden, and Aaron for their

love and support.

xiv

CHAPTER 1

INTRODUCTION

1.1 Literature Review

1.1.1 General Radiation Transport

Radiation is the dominant mode of heat transfer in high temperature combustion envi-

ronments [2]. Radiative heat transfer in turbulent flames affects the gas and particle phases,

including all the associated combustion chemistry. The turbulence-radiation interactions

(TRI) have been shown to be of great importance in turbulent flames [3, 4, 5, 6, 7]. Modeling

TRI is difficult due to the nonlinear coupling between temperature, species concentrations

and radiative intensities [8, 5]. Further, coupling parallel simulations of combustion and

radiation poses several numerical challenges. The fluid mechanics of combustion are local

phenomena, making them amenable to domain decomposition. Conversely, radiation is

a long-distance, and potentially all-to-all phenomenon, creating difficulties for domain

decomposition. Further, accurate calculation of radiative transfer requires spatially resolved

information regarding the temperature and species composition fields. Traditional modeling

of turbulent systems has included Reynolds-averaged Navier Stokes (RANS) simulations.

The RANS model provides, at a relatively low computational cost, spatially averaged values

of the gas temperature and species fields. However, for highly non-linear physics such as

radiation, spatial averaging in this manner may introduce large errors [9]. Alternatively,

direct numerical simulation (DNS) fully resolves the power spectrum of eddies, giving access

to the full spatial distribution of the pertinent fields. Wu et al. [10] and Deshmukh [11]

have coupled a monte-carlo ray tracing method to solve the radiative transfer equation in

a turbulent reacting flow modeled by DNS. Unfortunately, due to its high computational

demand, DNS remains impractical for use in large-scale combustion simulations. In contrast,

large eddy simulations (LES) resolve the largest fluid motions, down to the Nyquist limit for

a given turbulent field and mesh resolution. Beyond this limit, the less-important smaller

eddies are approximated via simpler models. Because combustion turbulence is generally

2

dominated by large eddies [12], LES gives a better description of the fluid mechanics than

RANS, and does so without the computational cost of DNS.

The various levels of accuracy in which thermal radiation has been modeled in com-

bustion simulations have been reviewed by Snegirev [13] and Sacadura [14]. The radiation

models cited include the optically-thin approximation [15], the discrete ordinates method

[16, 17] the discrete transfer method [18], and the finite volume method [19]. The optically

thin model neglects the participation of media (absorption, emission, and scattering), and

has been shown to introduce error even in small flames [20]. The remaining methods

model radiative emission as energy emanating along a set of pre-defined directions. Such

angular discretization suffers from the ray effect [21]. Conversely, monte-carlo techniques

that select randomly-distributed rays at each time step have low sensitivity to angular

discretization and are applicable regardless of media optical thickness [13]. In his earlier

work, Snegirev presents a RANS model of buoyant turbulant diffusion flames coupled with

statistical modeling of thermal radiation transfer. Although Snegirev’s earlier model used a

robust formulation of thermal radiation via the monte-carlo method, his turbulence model

suffered from the lack of resolution of the sharply varying fluctuations of temperature and

species concentrations that are lost in RANS approximations. More recently, Snegirev

coupled monte-carlo radiation with large eddy simulations [22, 23]. These simulations

operated on modest meshes of approximately 498,000 control volumes. Other examples

of coupled LES monte-carlo radiation models are rare, but include the work of Zhang et

al., in which a larger mesh of 4.7 million cells were used [24]. In this emerging field remain

several unresolved issues. One such issue is how to deal with increasing mesh sizes that are

run on increasingly parallelized high-performance computing systems.

Modern super computers are comprised of hundreds of thousands of computing cores,

and are used to run simulations with meshes comprised of billions of computational cells

[25, 26, 27]. Strong scaling in massively-parallel computing is difficult to obtain due to load

imbalancing and inter-processor communication demands. The strong scalability limit of a

code is reached when an increase in the number of parallel processors used on a fixed problem

size does not result in a decrease in computational wall time [28]. Numerous examples of

parallelized monte-carlo radiation models were investigated by the author, most of which

cease to scale beyond 100 processors [9, 24, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,

42, 43]. An example of a coupled combustion and monte-carlo radiation model that has a

scalability limit above 200 processors was not found in the literature.

In this work, a new numerical technique has been developed to perform large eddy

3

simulations of large-scale combustion flows coupled with a three-dimensional reciprocal

monte-carlo ray tracing radiation model. This model has been optimized for use on high-

performance computing systems, runs on meshes comprised of 8 million+ cells, and achieves

nearly-ideal strong scaling to over 16,000 processors.

As mentioned above, fluid mechanics and most other phenomena in combustion physics

are localized phenomena and are readily solved on domain-decomposed meshes. In this

work, to represent the long-range effects of radiation, the computational domain is recom-

posed at the time of each radiation solve. This is accomplished over a message passage

interface, through which each processor shares the temperature and radiative-properties

fields (absorption coefficients, scattering coefficients, and cell types) with all other proces-

sors. This reconstructed domain combined with the mutually exclusive nature of reciprocal

monte-carlo rays is amenable to massive parallelism. Radiative properties are calculated

via the Hottel and Sarofim method [44]. For efficiency, these calculations are pre-computed

and tabulated in narrow increments of temperature and species mixture fraction values.

1.1.2 History of the Monte-Carlo Method

The monte-carlo method was developed by Enrico Fermi, John von Neumann, and

Nicholas Metropolis for the Manhattan Project during World War II [45]. The method

modeled the behavior of neutrons and involved following the histories of these neutrons

during fission. In the early 1960’s, Fleck, and later Howell and Perlmutter, applied this

method to thermal radiation heat transfer [46, 47, 48, 49, 50]. The monte-carlo method

was later adopted and greatly enhanced by the computer graphics community [51, 52, 53].

Since then, the monte-carlo technique has been widely applied to practical problems with

participating media [46]. Additionally, this method has been used to produce semi-exact

solutions to problems that have no known analytical solution [54].

The monte-carlo method is not without its drawbacks. Because it is a statistical

technique, the variance of the error is inversely proportional to the number of rays used

in the sampling. The standard deviation is therefore a function of the square root of the

number of samples, resulting in slow convergence rates [46]. The monte-carlo method is also

computationally expensive when run in serial on a single processor. However, because of the

uniqueness of the solutions to each of the rays, reverse monte-carlo ray tracing (RMCRT)

is amenable to massive parallelism. In certain cases shown in later sections, this attribute

outweighs the low serial efficiency, making RMCRT an attractive option in such scenarios.

4

1.1.3 Other Numerical Radiation Methods

There is a handful of other numerical models that perform approximations of the RTE.

These include the Spherical Harmonics Method, the Discrete Ordinates Method (DOM),

the Zonal Method, the Discrete Transfer Method (DTM), and the Finite Volume Method.

Each of these models is given a cursory overview in the proceeding paragraphs.

The spherical harmonics method approximates the RTE with a set of simultaneous

partial differential equations. This approach was developed by J.H. Jeans in the early 20th

century as a way to model stellar radiative-heat transfer [55]. The set of partial differential

equations that represent the RTE is significantly simpler than the RTE itself, allowing

radiation calculations to be carried out by hand. It was therefore quite popular prior to

the advancements of electronic computing. The major downfall of this method is that an

increase in the accuracy of the solution comes at the price of higher order partial differential

equations, and subsequently much longer computation times [56].

Similar to the spherical harmonics method, the discrete ordinates method (DOM) trans-

forms the RTE into a set of simultaneous partial differential equations. This is accomplished

by discretizing the angular domain into a well-defined set of ordinate directions, and in-

tegrating along the path lengths. It was first proposed by Chandrasekhar for work in

stellar radiation [57], and was later adopted by the neutron transport community [58].

Fiveland and Smith then optimized the DOM for use in general radiative heat transfer

applications [59, 60]. Since its inception, this method has been used in many applications

including furnaces, diesel engines, and composite materials [61, 62, 63]. Although the

discrete ordinates method performs well in serial, an obvious path to GPU-based parallelism

is not available [17, 64]. It also suffers from an angular discretization artifact known as the

ray effect, which can become particularly pronounced if surface fluxes to small objects are

of interest [21]. Further details of the discrete ordinates method can be found in the books

by Kourganoff, Davison, and Murray [65, 66, 67].

Another method exists that, unlike the previous two methods, discretizes the domain

spatially, rather than angularly. This method is known as the Zonal Method, and was

developed by Hottel and Cohen in 1958 [68]. Each sub-volume, or zone, was treated as

isothermal, whereby radiative exchange rates between the zones could be computed. An

energy balance throughout the domain is then performed to solve for the unknown heat

fluxes. Initially the method could handle only non-scattering, gray gases with constant

absorption coefficients, but in 1968, Hottel and Sarofim extended the method’s capabilities

to include isotropically scattering media with non-constant non-gray absorption coefficients

5

[44].

The discrete transfer method (DTM) was developed by Lockwood and Shaw in 1981 as

an attempt to address some of the shortcomings of previous numerical radiation techniques.

It was developed specifically for general combustor prediction procedures. The DTM is

somewhat of a chimera of several methods and includes features of the zonal, monte carlo,

and flux model solution methods. In the words of Lockwood, this method

“is based on the solving of representatively directed beams of radiation

within the enclosure between the known wall boundary conditions and on the

subsequent computing of the radiation sources which arise within the finite

difference control volumes of the flow procedure due to the passage of the beams.

It is fast, exact applicable to complex geometries, and it retains in evidence the

physics of the problem by avoiding complex mathematics” [18].

Unfortunately, in the process of simplifying the mathematics, this model has been shown

to represent poorly the effects of anisotropic scattering, and similar to its predecessor, the

DOM, still falls victim to the ray effect [69, 70, 61, 71, 72]. To address the prevalence

of the ray effect in the DTM, Li later modified the model by further discretizing each

angular direction into 9 rays with discrete quadrature. This mitigated the ray effect without

increasing the number of simultaneous partial differential equations to be solved [73].

More recently, a method has been developed that is catered to unstructured meshes and

is designed to accommodate simultaneously for heat conduction, convection and radiation.

This method, known as the Control Volume Finite Element Method, was developed by

Rousse in 1999. True to its name, this method creates unique, non-overlapping control

volumes around each node in the domain. It then performs operations similar to the discrete

ordinates method by discretizing the angular domain and solving a set of coupled partial

differential equations related to the RTE, which has been modified to account for convection

and conduction. This method has similar advantages and disadvantages to the DOM, with

the additional advantage of being more amenable to unstructured meshes [70].

1.1.4 Parallel Ray Tracing

Algorithmic parallelism involves dividing tasks among multiple processors to solve si-

multaneously a given problem [74]. In theory, parallelism can lead to a wall-time speedup

that is proportional to the number of processors used in parallel. Ideal speedup occurs

when the time spent passing information between processors is negligible compared to the

work done by each processor, and when no computers sit idle while others complete their

6

tasks. The former constraint is met by efficient code writing that ensures that all or most

of the information a given processor needs to complete its computations is available to that

processor. The latter constraint is met via proper load balancing that distributes the work

load equally between processors.

The first attempts to parallelize monte-carlo methods did so on single-instruction multiple-

data stream (SIMD) machines. On this architecture, vectors or groups of rays were dis-

tributed to the processors. This however, led to poor scalability as it necessitated the

termination of all rays before generating a subsequent group. More recent algorithms

generate new rays at the onset of termination of a ray to avoid creating idle time amid

processors [75].

Load balancing may be accomplished in at least two general ways–dynamic load balanc-

ing, and static load balancing. Static load balancing schemes distribute the load only once,

at the onset of computation. However, because the computation times of different regions

of a domain are problem-dependent and rarely uniform, static load balancing often creates

idle time amid processors. Dynamic load balancing begins with an initial load distribution

which can then be modified if and when computers complete their original tasks. Heirich

and Arvo have noted that when total computational time is of importance, static load

balancing is insufficient for parallel ray tracing on massive high-performance computing

systems [76].

Strong scaling in massively-parallel computing is difficult to obtain due to load im-

balancing and inter-processor communication demands. The strong scalability limit of a

code is reached when an increase in the number of parallel processors used on a fixed

problem size does not result in a decrease in computational wall time [28]. Some meth-

ods to parallelize ray tracing for radiation applications do so by passing between pro-

cessors rays that have breeched the local grid extents. Wise and Abel of Princeton and

Stanford Universities, respectively, have expended considerable efforts on their paralleliza-

tion strategy of their ray casting scheme for the coupled hydryodynamics radiation code,

ENZO. Unfortunately, strong scaling analysis of this algorithm showed no improvement

of computational time for parallelism at 70 or more processing cores [29, 30]. This is

perhaps due to the large amount of communication that resulted from the passing of

rays between processors. Kuiper et al. developed a similar parallel ray tracing scheme

for computing radiation transport in stellar formations, but to date, have not demonstrated

strong scaling beyond 64 processors [31]. In 2009, Gentile successfully scaled ray tracing

for radiation calculations to 128 processors. Any further increase in processors resulted

7

in no further decrease in computational time [43]. Numerous examples of parallelized

monte-carlo radiation models were investigated, most of which ceased to scale beyond 100

processors [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 9, 40, 24, 41, 42, 43]. An example of a

coupled combustion and monte-carlo radiation model that has a scalability limit above 200

processors was not found in the literature.

As part of this dissertation, a parallel-capable radiative-flux solver that scales to 16,000

processors has been created. Such scaling is attained by avoiding the Message Passing

Interface (MPI) by stitching together a decomposed domain into a global domain for each

processor, and utilizing reverse monte-carlo rays that traverse freely throughout the domain

until extinction.

The computer graphics community has taken advantage of Graphics Process Units

(GPUs) to run parallel ray tracing. The shared memory of the GPU and breakdown of

each GPU into hundreds of cores allows for the simultaneous tracing of hundreds of rays

per GPU. GPUs are allowing for real-time volume rendering in the graphics community [77].

In 2008, Despres showed that a simplified monte-carlo ray tracing algorithm performed 6

times faster on an nVidia 7600 GS GPU than it did on a Xeon 2.4 GHz CPU. This speedup is

further increased for larger numbers of computational cells, indicating that at finer meshes,

the GPU will dominate in ray tracing efficiency [78].

Todd Harman and Alan Humphry of the University have translated the RMCRT model

described in this thesis into the CUDA language, allowing RMCRT to run on the GPU

nodes of the supercomputer, Titan. The CUDA version of RMCRT attained ideal strong

scaling to 16,000 cores.

1.1.5 Previous Work in RMCRT By Paula Sun

A former student of our laboratory, Paula Sun made significant contributions to a reverse

monte-carlo ray tracing algorithm. She performed an extensive literature review on the

topic, consulted a ray tracing expert, and designed a stand-alone radiation solver [45]. Her

dissertation outlined the governing equations for a RMCRT scheme for an absorbing, emit-

ting, scattering medium with gray, diffuse/specular boundaries. She also identified several

benchmark cases that have proven useful in the verification of the algorithms described in

this dissertation. Although her work was not compatible with the Uintah framework and

was not designed for parallel performance, it paved the way for this work that has such

capabilities.

8

1.2 Research Objectives

Accurate radiative-heat transfer solving methods that handle complex physics are in-

herently computationally expensive. The legacy radiation solver, the Discrete Ordinates

Method, which is used within the Arches component, is not amenable to GPU applications.

It also suffers from the ray effect inherent to fixed-angular discretization techniques.

To address the above issues, the following objective has been proposed and met: Develop

a reverse monte-carlo ray tracing scheme that computes the radiative-flux divergence for

interior cells, and the net radiative flux for boundary cells of a computational domain. To

accurately represent reality, the model incorporates the following physics

• Non-homogeneous, absorbing, emitting media

• Homogeneous, isotropic, scattering media

• Black or gray wall absorption and emission

• Specular wall reflections for arbitrary reflectivities

• Complex domains which may include intrusion features

• Fluxes with arbitrarily sized view angles, orientations, and locations

This final item comprises the “virtual radiometer” feature and allows the user to define the

parameters of radiometers such as locations, orientations, and view angles. This will allow

the user to perform validation and uncertainty quantification with flux measurements from

experimental radiometers.

From the onset of this research project, parallel capability of the radiation solver has

been an area of focus. Several parallelism techniques were considered. These include

1. Parallelize by patch domain decomposition with global information, eliminating the

need to hand off rays

2. Parallelize by patch domain decomposition with local information only, and hand off

rays between the patches

3. Parallelize with a hybrid of (1) and (2). Each processor stores the fine information for

a different region of the grid which becomes the focal region for that processor. Each

processor is then passed a coarsened version of the rest of the domain, eliminating the

need to hand off rays.

The details of these techniques as well as their respective advantages and disadvantages

are given in Section 2.1.2.

9

1.3 Expected significance

High performance computing systems are being equipped with an ever-increasing number

of graphics processing units (GPUs) [79]. Examples include the Keeneland Initial Delivery

System (KIDS) and the conversion of the DOE Jaguar system to Titan [80, 25]. The

radiation calculations, which represent a small fraction of the overall physics involved in

a complex fire simulation, consume 20 to 80% of the total simulation time. For a given

level of accuracy, this research suggests that RMCRT run on CPU clusters is faster than

the DOM (see section 9.1). A GPU-compatible version of RMCRT has demonstrated an

additional 4 to 5X improvement over the CPU version [64]. One of the key developments of

this research has been the capability to stitch together a patch-decomposed domain into one

that is unified. This has eliminated the need to hand off RMCRT rays between processors

during run time, reducing inter-processor communication allowing for the parallel scalability

demonstrated above.

1.4 Broad description of modeling

An efficient reverse monte-carlo ray tracing algorithm includes a handful of key compo-

nents. Among them are a fast, reliable random number generator, an efficient ray marching

algorithm, and generality to handle phenomena including reflecting rays, non-cubic cells,

and scattering. The model ultimately solves for radiative fluxes and radiative-flux diver-

gences, so appropriate equations for those physics are also used. The developed model is

one that gives the user the ability to dial-in the desired accuracy/speed through variable

numbers of rays and/or mesh resolutions. Another primary objective has been to develop

a radiation model that can scale in massive parallelism. The chosen route to parallelism

has been to reconstruct a domain-decomposed mesh to allow for the uninterrupted tracing

of rays to extinction.

In summary, the modeling undertaken for this research has been two-fold: first, produce

a high-fidelity RMCRT algorithm that incorporates the major physics of radiation, and

second, create a scheme that allows for efficient massive parallelism of this algorithm.

1.5 Components and Architecture

The Uintah framework was originally designed by the Center for the Simulation of

Accidental Fires and Explosions (C-SAFE). This software suite was funded by the Depart-

ment of Energys Accelerated Strategic Computing Initiatives (ASCI) Academic Strategic

Alliance Program (ASAP). Uintah provides a software system in which complex multi-scale,

multi-physics chemistry and engineering simulations can be performed. To provide a means

10

under which a variety of problems can be simulated, Uintah makes use of a component sys-

tem under which large pieces of software (components) can be implemented independently

[81, 82]. To the maximum extent possible, RMCRT was developed generically to allow the

model to be used by any Uintah component. Because members of our research group have

the greatest experience in the Arches component, validation and verification were performed

primarily therein.

The Arches component solves the conservative, finite volume, compressible, low-mach

formulation of the Navier-Stokes equation [83]. It was designed to solve the mass, mo-

mentum, mixture fraction, and thermal energy governing equations inherent to coupled

turbulent reacting flows. Arches is a Large-eddy simulation component, and as such resolves

the fluid motion down to the Nyquist limit of the power spectrum. It has relied heavily on

the legacy Discrete Ordinates Method (DOM) for the radiative source term solve [84].

Performance profiling indicates that the DOM solve represents the most computationally

intensive portion of an Arches combustion simulation. Although DOM can be made to

scale [85], it is unknown whether this radiation solver is amenable to GPU computing and

embarrassing parallelism. Conversely, RMCRT lends itself to scalable parallelism because

the intensities of the rays are mutually exclusive. Therefore, multiple rays can be traced

simultaneously from any location in the computational domain [86].

CHAPTER 2

MODEL DESCRIPTION

12

2.1 Model Description

The robustness of monte-carlo ray tracing to predict radiative fluxes has previously

been established by Snegirev and Modest among others [13, 87]. In a massively parallelized

framework, where the computational domain is heavily decomposed, traditional forward

monte-carlo methods (FM) suffer due to the large number of traced rays that never reach

the subdomain of interest handled by a particular processor. Therefore, an emission-based

reciprocity method (ERM) similar to that developed by Tesse et al. [88, 89] has been

implemented. In this model, optical paths (i.e. rays) propagate away from cells whose

radiative-source terms are currently being solved, and the emission from the cells along the

paths are attenuated in a reciprocal manner back to the origin cells. In this manner, rays

are generated only from cells where results are expected [90].

The governing equation for reciprocal monte-carlo ray tracing in nonhomogeneous,

participating media was developed by Walters and Buckius [91]. Specifically,

Ii,k =

lk∫
0

Ib,cvκ(l′)exp[−
lk∫
l′

κ(l′′)dl′′]dl′ + Io,sur(Tw)exp[−
∫ lk

lw

κ(l′)dl′], (2.1)

where Ii,k represents the incident intensity at location k, κ represents the absorption

coefficient, and l′ represents the locations of the segment lengths along a ray.

In a discretized domain, piecewise homogeneity is assumed and Eqn. (2.1) is posed in

the following form,

Ii,k =

M∑
m=1

(
Ib,v(e

−
∫ lk
lm κ(l′)dl′ − e−

∫ lk
lm−1 κ(l′)dl′)

)
+ Io,s(Tw)e−

∫ lk
lw
κ(l′)dl′ , (2.2)

where M represents the total number of discretized segment lengths of the ray. Thus, at

a given location a distance l′ away from the starting point of the ray,
∫ lk
lm
κ(l′)dl represents

the optical thickness of the path from lk to l′ and
∫ lk
lm−1

κ(l′)dl is the optical thickness of

the path from lk to the previous l′. The intensities from each of the rays of a cell are

then weighted according to the solid angle that each ray subtends [45]. Assuming uniform

distribution of the rays, each ray subtends Ω
N steridians, where Ω is 4π Sr. for flow cells,

2π for boundary cells, and N is the number of rays per cell used in the simulation. The

radiative flux is then calculated from the intensities of the rays, weighted by the discretized

solid angle,

qi =
Ω

N

N∑
r=1

Ii(ir)cos(θ(ir)), (2.3)

13

where Ii(r) and θ(r) represent for a particular ray, the incoming intensity and angle from the

cell boundary normal, respectively. The radiative flux divergence of flow cells is calculated

as

∇ · q = κ(4πIb −
∫
4π

IindΩ), (2.4)

where
∫

4π IindΩ is represented by
N∑
r=1

Ir
4π

N
.

The origin locations of the rays are distributed randomly throughout the cell. In this

model, the Mersenne Twister random number generator is used to select the origin locations

and ray orientations [92]. In Cartesian meshes, randomly distributed ray location generation

is trivial, and is accomplished by scaling three random numbers with the length, width,

and height of the cell, respectively. Randomly-distributed ray orientation requires more

treatment. Rays propagating from boundary surfaces are distributed over a hemisphere as

follows.

φ = 2πR1

θ = arccos(R2)

x̂ = sin(θ) cos(φ)

ŷ = sin(θ) sin(φ)

ẑ = cos(θ).

R1 and R2 are random numbers that vary between zero and one, φ and θ are the

azimuthal and polar angles, respectively, and x̂, ŷ, and ẑ are the resulting components of

the direction vector in Cartesian coordinates. The above formulation generates rays that

are randomly distributed over a hemisphere with a normal vector in the positive z direction.

The ray marching model adjusts the ray directions into the proper orientation based on the

surface normal of the boundary cell at hand. This is accomplished by changing the order

and sign of the three direction components.

14

For flow cells, no re-orientation of the direction vector is necessary, as the rays are

randomly distributed over the full 4π Sr. Direction assignment is as follows,

ẑ = 2R1 − 1

r =
√

1− z2

φ = 2πR2

x̂ = r cos(φ)

ŷ = r sin(φ)

Ray marching proceeds in a manner similar to that described by Amanatides and Woo

[93]. The location and orientation of a ray are used to calculate the distances to each of the 3

potential exit faces of the cell in which the ray currently resides. The shortest of these three

distances is used in determining through which face the ray will pass. This information is

then used to calculate the next cell in which the ray will reside. Reflections are allowed to

occur on non-black boundary faces. The temperature and emissivity of the boundaries are

referenced, and the intensity at the ray-boundary intersection is computed and attenuated

to the target location. For non-black surfaces, the ray reflects off the surface, and the

subsequently referenced intensities are attenuated both by the total optical thickness and

by the absorption of the boundary. Ray marching continues until the optical thickness

of a ray exceeds a predetermined threshold value. In general, the threshold is met when

fe−τ < 0.01, where τ is the current optical thickness, and f is unity multiplied by one

minus the absorptivity of each intersected boundary, (1 − αb). In other words when less

than 1% of the intensity from a location in the domain will reach the target cell, ray tracing

of the current ray ceases.

2.1.1 Scope

The scope of this dissertation includes the demonstration of a parallel, reverse monte-

carlo ray tracing (RMCRT) model that incorporates the following physics.

• Non-homogeneous, absorbing, emitting media

15

• Homogeneous, isotropic, scattering media

• Black or gray wall absorption and emission

• Specular wall reflections for arbitrary reflectivities

• Complex domains which may include intrusion features

• Fluxes with arbitrarily sized view angles, orientations, and locations

Each of these items has been discretized and modeled in the RMCRT algorithm. Some

detail on the implementation of each of the above items is given below.

To accommodate for item (1), non-homogeneous, absorbing, emitting media, each cell

in the domain traces N number of rays from each cell within the patch, and follows

those rays throughout the domain until extinction. These rays pick up and attenuate

intensity according to the Radiative Transfer Equation (RTE) for an absorbing, emitting

and scattering medium, according to the following expression,

∂I(s, ŝ)

∂s
= κIb(s)− (κ+ σs)Ib +

σs
4π

∫
4π
I(ŝi)Φ(ŝi, s)dΩi. (2.5)

The intensity of the cells through which the rays pass are accumulated and attenuated

along their respective paths back to the origin. The intensity contributions from all the

rays for a given cell are summed, and scaled by Ω
N , where Ω represents the solid angle, and

is generally specified as 4π Sr., a full sphere. This scaled value gives, for a specific cell,

the contribution from the intensities from all cells in the entire domain, and is frequently

denoted as the incident radiation function, G. This value is then be used to yield the

radiative-flux divergence as follows,

∇ · q = κ(4πIb −G). (2.6)

These equations are solved and discretized for use in a Cartesian mesh.

When item (2), homogeneous, scattering media, is introduced, the ray marching algo-

rithm allows the ray direction to change at any cell boundary within the domain. This

involves calculating scattering lengths to determine when a ray will scatter, as well as

determining the new ray direction based on the scattering phase function.

The distance between scattering events is determined from the cumulative probability

function,

16

lσs =
1

σs
ln

1

Rσs
,

where σs is the scattering coefficient, and Rσs is a random number with a range of zero

to one.

The azimuthal and polar angles of the new direction are be determined from

Rψ =

∫ ψ′
0

∫ π
0 Φ(s · s′)sinθ′dθdψ′∫ 2π

0

∫ pi
0 Φ(s · s′)sinθ′dθdψ′

,

Rθ =

∫ θ
0 Φ(s · s′)sinθ′dθ∫ π
0 Φ(s · s′)sinθ′dθ

,

where Φ is the scattering phase function and is a function of the particles in the media as

well as the original direction vector, s, and the new direction s′. When isotropic scattering

is assumed, as in this model, the following formulation is used to compute the components

of the post-scattering direction vector.

z = 2R− 1

r =
√

(1− z2)

θ = 2πR

y = rsin(θ)

x = rcos(θ)

For item (3), wall absorption and emission, the intensity of a ray is augmented by the

emission and absorption of the boundaries that the ray strikes. When a ray strikes a wall,

the intensity that is accumulated at the ray origin is increased by the following amount,

Io,sur(Tw)exp[−
∫ lk
lw
κ(l′)dl′], where Io,sur is the intensity of the wall at the surface location

struck by the ray, and the exponential function represents the attenuation of that intensity

on its path back to the ray origin. To incorporate these physics into the RMCRT model,

Eqn. (2.2) is modified to include this additional term,

Ii,k =
M∑
m=1

Ib,cv(Tm)(exp[−
lk∫

lm2

κ(l′)dl′]− exp[−
lk∫

lm1

κ(l′)dl′])

+Io,sur(Tw)exp[−
lk∫

lw

κ(l′)dl′].

(2.7)

For item (4), specular wall reflections for arbitrary reflectivities, several modifications

were introduced. First, a subroutine was created that is called at the moment a ray enters

a non-flow cell. This new cell is referenced for item (3). Because the location of the ray is

now outside of the flow domain, the ray is backed out into the flow region. The next step is

17

to accurately determine the new direction of the ray. Assuming the domain is one in which

the faces of all cells line up with the Cartesian directions, as is the case in Arches, then this

step is simplified significantly. The calculations essentially reduce to flipping the sign of the

component of the direction vector that corresponds to the boundary face that was struck.

See section (3.1.7) for a more detailed derivation.

For item (5), complex domains which may include internal features, an additional test

along each step of the ray marching algorithm is implemented. The test is simple and is

essentially an if/else statement conditional on the cell type of the current cell. If the cell

type corresponds to a flow cell, ray marching continues without interruption. Otherwise,

the subroutines for items (3) and (4) are called.

Item (6) has been labeled as the “Virtual Radiometer Model.” Its implementation

consists of allowing the user to specify in an input file a radiometer location, orientation,

and view angle. These parameters would correspond to a true radiometer that was placed in

a fire during a combustion experiment. This has allowed validation efforts to be performed

between experiments and simulations.

In addition to the 6 items mentioned above, the developed RMCRT model offers versa-

tility in accuracy and speed. The user may select any positive integer number of rays to

produce the desired accuracy/speed ratio. Further, the number of rays used for boundary

luxes, flux divergences, and virtual radiometer fluxes remain independent. This gives the

user the ability to separate the flux solution from the divQ solution. For example, if the

user is most interested in the fluxes at a handful of locations or a series of locations that

lie in a single plain, as often occurs in validation cases, the user can run with relatively

few rays to produce basic radiative effects in the flame, while using extremely fine angular

discretization at the locations of interest.

2.1.2 Parallel RMCRT

RMCRT lends itself to massive parallelism because each ray’s intensity is independent

of all other ray’s. Multiple rays are traced simultaneously at a given time step. In theory,

one could simultaneously trace as many rays as one has processing cores. For this method

to scale, however, inter-processor communication should be low relative to the work of ray

tracing. This is challenging, considering that radiation is a globally-coupled phenomenon.

Several parallelism techniques were considered. These include

1. Parallelize by patch domain decomposition with global information, eliminating the

need to hand off rays

18

2. Parallelize by patch domain decomposition with local information only, and hand off

rays between the patches

3. Parallelize with a hybrid of (1) and (2). Each processor stores the fine information for

a different region of the grid which becomes the focal region for that processor. Each

processor is then passed a coarsened version of the rest of the domain, eliminating the

need to hand off rays.

Item (1) has the advantage of avoiding the message passing interface for each ray. The

disadvantage, however, is that this scheme would require information about the entire

domain to be stored on each processor. Specifically, the absorption coefficient, temperature,

cell type and scattering coefficients fields, each of which is a double precision variable,

of O(n3) cells, where n is the number of cells in a single direction, would be stored on

each processor. This is a strict requirement, and would limit the size of the domain to

approximately 3503 for the current computers.

One advantage of item (1) is that it takes advantage of existing software in the Uintah

framework that allows the domain to be decomposed by patches, or subsections of the

domain. In this approach, a processor computes the flux divergence of each cell within

its patch by tracing N rays from each cell and allowing them to march through the entire

domain.

Item (2) is not limited by memory as item (1) is, as it does not store any global

information. However, it is suffers from another factor–interprocessor communication.

Because radiation is a global phenomenon, physically-accurate rays would travel through

the entire domain. Yet for item (2), as soon as a ray leaves a local patch, the information

necessary to compute an incoming intensity is not available to the processor that owns the

origin cell of the ray. Therefore, the processor would either request the information of the

adjacent patch, (and in optically thin domains, the adjacent to the adjacent, and so on),

or it would hand off the ray to an adjacent processor. This would amount to the handing

off of millions of rays for a single time-step of a typical simulation, and would burden the

message passing interface, likely degrading the parallel performance.

Item (3) is somewhat of a hybrid of items (1) and (2) in that the domain is decomposed

into patches, the fine information existing only locally, yet the global information still

existing on the processor, but in a coarsened state. The simplest case would be a fine

focal level that has the same resolution as the rest of the domain, i.e. the whole domain

is on the same refinement level, leading to the case described in situation (1). A slightly

more advanced case is one where all but the local patch are coarsened to a single, coarse

19

state, leading to a total of two levels. More advanced cases can be imagined where the

patches adjacent to the focal patch are coarsened slightly, the ones adjacent to those are

coarsened moderately, and the most distal patches are coarsened heavily. Such a multi-level

approach allows the information most pertinent to the incoming intensity to be left relatively

un-coarsened, yet information that is distal to be less accurate, and therefore less memory

intensive. Justification for coarsening the distal information is two fold. First, the cells that

are not proximal to a given set of focal cells is separated by an optical thickness that will

attenuate the intensity between them, thereby limiting the effect on the focal cells. Second,

the distal cells subtend a smaller solid angle than the proximal cells, again limiting the

effect on the focal cells. This second effect is demonstrated numerically in that a distal cell

will have a far smaller probability of being intersected by a given ray than would a proximal

cell of comparable size.

Using item (3), the most pertinent information of the domain is preserved, intra-timestep

message passing is avoided, and the distal regions are coarsened to an extent that balances

the desired accuracy with the memory constraints of the computer at hand. The radiation

solver has been designed to run with a coupled CFD component such as Arches or Wasatch,

and as such will usually deal with information that is domain decomposed. To stitch

together and coarsen the non-focal region of the domain, the domain information that is

scattered between the processors is requested by each processor. Therefore, at the beginning

of each time-step, a considerable amount of information passes through the message passing

interface. Shy of reverting to the use of (2), which has its own message passing requirements,

this “start-up” message passing is unavoidable. Fortunately, the amount of start-up message

passing decreases when multiple levels are used, as coarser and coarser versions of the

domain are being stitched together.

To optimize run-time efficiency, items (1) and (3) were selected for development. At

present, item (1) has been successfully developed and implemented and favorable results

have been obtained. Item (3) has also been developed, but results were less favorable.

Both methods involve a mesh reconstruction technique that allows ray generation and

propagation to occur on a each processor independently, negating the passing of rays, and

minimizing inter-processor communication.

At each radiation solve, the decomposed domain used for parallelism of the combustion

model is recomposed and the radiation-specific field variables from each processor are shared

with all other processors. Information sharing is accomplished through a message-passing

interface.

20

2.1.3 Adaptive Focus Mesh Refinement

The patch recomposition technique mentioned in section 2.1.2 is viable only so long as

each processor has sufficient memory to store the temperature, absorption coefficient, cell

type, and scattering coefficient fields for the entire domain. However, for a typical processor

commanding 4GB of RAM, segmentation faults begin appearing for domains larger than

approximately 3503 cells. A potential solution to this problem is to discretize the domain

such that each processor is handed a subset of the domain, called a patch. For regions

outside the patch, the processor is handed a coarsened version of the rest of the domain.

This takes advantage of the existing framework common to parallelized LES codes such as

the Arches code owned by the Institute for Clean and Secure Energy[94]. To create a mesh

with multiple refinement levels, framework and data management adjustments have been

made to the ARCHES component. The ray tracing algorithm has also been modified to

run on this adaptive-focus mesh (a.k.a. Data Onion). Modifications include adjustment of

the step size once a refinement level boundary has been reached, as well as an algorithm

to determine the new ray location upon entering a new level. At present, the Data Onion

approach is producing unfavorable timing and accuracy results. Further investigation may

reveal a flaw in the programming or perhaps the method itself. Details of the implementation

are given in section (7.3).

Although the adaptive-focus mesh addresses the issue of global storage of radiation field

values, thus avoiding the passing of rays between processors, it does not completely avoid the

message passing interface (MPI). Arches and other Uintah components perform parallelism

via patch domain decomposition. In this paradigm, an intact version of the entire domain

simply does not exist. Portions of the domain are stored amid the various processors, so

during the creation a composite mesh, each processor gathers the patches from all other

processors. The more time that is spent on passing information between processors, the less

efficiently the algorithm will scale. To mitigate the amount of data that is handled on the

MPI, I propose aggressive coarsening on regions of the domain that are distal to the focus

region. Justification for this is two-fold. First, the physical distance between the distal and

focus regions increases the optical thickness. Therefore, any contribution from the distal

regions will be attenuated exponentially along that path length, thus decreasing the effect

of the distal region on the origin cells. Second, the distal regions subtend a smaller solid

angle than do proximal regions, again limiting the impact on the focus cells.

21

2.1.4 Function Abstraction

Originally, the code that handled ray marching and the updating of intensity along

the ray resided within the function that contained the code that determined the directions

and locations of rays. However, as development progressed to include solvers for boundary

fluxes, imaginary surface fluxes, and virtual radiometer fluxes in addition to the original

flux-divergence solver, the code began to become cluttered with a series of “if” statements,

and other conditional statements, depending on which physics were being handled at the

moment. Because each of these four physical phenomena requires information about in-

tensities along rays, the intensity solver was isolated into its own function that could be

called independently from the other solvers. For instance, the virtual radiometer model

uses cell-centered rays that have direction vectors distributed across a small solid angle

defined by the view angle of the radiometer, while surface fluxes use face-distributed rays

that have direction vectors that span the 2π hemisphere of the surface, yet both of these

methods ultimately require the intensity integrated along each ray. Therefore, it was most

intuitive to have the ray-marching and intensity solver abstracted into its own function

that takes as arguments the location and direction of a ray as specified by the solver at

hand. In this manner, we also avoid cloning portions of the code into multiple files, which

would otherwise necessitate maintaining and updating several independent files every time

one wished to make a change to any one of the files. There was a marginal increase in

computational time (˜8%) that was introduced when the intensity solver was abstracted

into a function, but the end result was cleaner code that is easier to maintain and enhance.

2.1.5 GPU implementation

The author collaborated with Todd Harman and Alan Humphrey of the University of

Utah as they developed a GPU version of RMCRT. The radiation model was translated

from its original language of C++ into the GPU-specific language, CUDA. This allowed

the model to be run on the GPU processors of the super-computing cluster, Titan. Strong

scaling was demonstrated up to 16,000 processors. Results and discussion can be found in

section (7.2)

CHAPTER 3

RAY TRACING

23

3.1 Ray Marching Algorithm

3.1.1 Cubic Cells

This section demonstrates the procedure of the ray marching algorithm in determining

the piecewise path taken by a ray as it moves through the computational domain. For sim-

plicity, this description will be carried out in two dimensions, although the same principles

are applied in three dimensional cases.

Let us begin with a small computational domain with two rows of cells, and six columns

of cells, indexed as (i,j), where i represents the row number starting from the bottom of the

domain, and j represents the column number starting from the left of the domain. Let the

vertical lines represent x planes, and the horizontal lines represent y planes. A ray is to be

traced from cell (1,1) from the ray origin indicated by the blue circle in the below figure.

Assume that a ray direction has already been determined, and will be represented by the

long dashed line below.

The length of the ray segment from the origin to the first cell wall that is breached by

the ray is determined. At this point in the algorithm, it is unknown whether the x plane or

a y plane will first be breached by the ray. To determine which plane will be breached (and

subsequently determine the next cell that the ray will enter) the distance from the origin to

the first x plane, TmaxX (green), is compared to the distance from the origin to the first y

plane, TmaxY (red) in the direction of the ray. In two dimensions, this is accomplished by

a simple “if/else” statement (additional comparisons are necessary in three dimensions).

Once the shortest of the two distances is determined, the current cell is updated by use

of the step variable. In this case, the shortest direction is TmaxX, so the ray steps in the

x direction. The distance traveled (in this case the green line above) is stored as disMin,

and will be used later in an algorithm that determines ray attenuation. Because the x

component of the direction vector is positive, the cell index is incremented by 1 in the x

24

direction, and the current cell becomes (1,2). The ray has progressed, and the scenario is

now represented by the following figure.

Note that the first segment of the dashed ray has now become solid. The distance

from the origin to the first y plane has not changed, so the red line representing TmaxY,

remains unchanged. However, the distance from the current location to the next x plane has

changed, and its length has been increased by the distance TDeltaX. TDeltaX represents

the distance required to traverse one cell length in the x direction. With the updated

value for TmaxX, again the green line is compared to the red line. Because TmaxX is still

shorter than TmaxY, the ray again steps in the x direction, incrementing i. The current

cell then becomes (1,3), and TDeltaX is stored as disMin for later use. The following figure

demonstrates the current state of the ray.

Now, the second segment of the dashed ray has become solid, and TmaxX has been

increased by TDeltaX. Note that for a given ray in a uniform mesh, TDeltaX and TDeltaY

do not change, as the distance required to traverse a cell in the x or y direction is independent

of the current cell. Again TDeltaX is compared to TDeltaY. The green line is still shorter

25

than the red, so the ray again steps in the positive x direction, TDeltaX is stored as disMin,

and cell (1,4) is reached as shown below.

The third segment of the ray has now become solid. The value of TmaxX is increased

by TDeltaX, and for the first time in this example, TmaxX exceeds the length of TmaxY.

Thus, the ray steps in the y direction and TDeltaY is stored as disMin. Because the y

component of the direction vector is positive, j is incremented and the ray enters cell (2,4)

as shown below.

The fourth segment of the ray is shown as solid, and TmaxY has been increased by the

distance TDeltaY. It is visually apparent that TmaxX is much shorter than TmaxY, and

therefore the comparison in the algorithm would lead to a subsequent step in the x direction

into cell (2,5) as shown below.

26

The fifth segment has become solid, and TmaxX has been increased by TDeltaX. At

this time, the reader should be familiar enough with the algorithm to predict that the next

two steps will be in the positive x direction, at which point the ray would either terminate

if the wall is black, or reflect based on the reflection algorithm which will be discussed in

later sections. Also in later sections, the reader will find a discussion of the attenuation of

radiation from each of the cells along the ray path back to the origin, and the importance

of disMin will become apparent.

3.1.2 Non-cubic Cells

For domains that contain cells with non-unity aspect ratios, additional considerations be-

come necessary in the ray marching algorithm. Throughout the above described algorithm,

distances are handled in units of cell width, which can then be converted to physical units

simply by multiplying by the cell size of Dx. However, when Dx is not equal to Dy or Dz,

this conversion becomes non-trivial, and requires additional computations. By normalizing

the lengths of Dy and Dz by Dx, the number of additional computations is minimized, such

that only 6 lines of code require modification. Explanation of this procedure is as follows.

Take the distance Dx to be of unit length. Then Dy and Dz have normalized lengths

of Dy
Dx and Dz

Dx , respectively. The first section of the algorithm that requires modification is

then the determination of ray origins. Previously, for cubic cells, it was assumed that the

origin was located at (i+rand(), j+rand(), k+rand()), where rand() represents a function

call to the random number generator which returns a random number distributed between 0

and 1. For non-cubic cells, the random numbers for the y and z directions are scaled by Dy
Dx

and Dz
Dx , such that the origin of a ray becomes (i+ rand(), j + Dy

Dxrand(), k+ Dz
Dx , rand()).

In this manner, the origins are randomly distributed throughout the cell, and not simply

throughout a cube.

27

The second portion of the algorithm in need of modification is the determination of the

original TMax values. Recall that the initial TMax values represent the distance from the

origin to each of the respective x,y, and z planes. For example, recall that for cubic cells,

TMaxY is calculated as follows

TMaxY = (j + sign[1]− rayLocation[1]) ∗ invDirV ector[1] (3.1)

,

where sign[1] is a boolean with a value of 1 if the y component of the direction vector is

positive, and zero otherwise. invDirV ector[1] represents one divided by the y component

of the direction vector. For instance, in figure 3.1, the origin is located at 17.343, 8.617. The

direction vector has components of 0.7071, and 0.7071, such that the sum of their squares

is equal to 1. Because the sign of the y component of the direction vector is positive, one is

added to 17 to represent the location of a y breach, and that value is subtracted from the y

value of the origin, then multiplied by the inverse of the y direction vector. Implementing

equation (3.1) TMaxY is computed as follows

TmaxY = (8 + 1− 8.617) ∗ 1

.7071
= 0.5416. (3.2)

This value is smaller than that of TmaxX which is calculated as follows

TmaxX = (17 + 1− 17.343) ∗ 1

.7071
= 0.9291 (3.3)

For non-cubic cells, however, when a given component of the direction vector is positive,

the origin value is subtracted not from 1 + j, but from 1 ∗ DyDx +j. When the component

of the direction vector is negative, this multiplication of Dy
Dx becomes unnecessary. This is

because the negative face value (8 in figure 3.1) is independent of the skewness ratio. To

elegantly handle the condition of multiplying by the ratio Dy
Dx the following formulation is

used for the more general case of non-cubic cells.

TMaxY = (j + sign[1] ∗ Dy
Dx
− rayLocation[1]) ∗ invDirV ector[1]

To illustrate, see figure 3.2 where a cell with Dy
Dx = 2 is superimposed onto the same

setup as illistrated in figure 3.1. Here, TMaxX is still equal to 0.9291, but TMaxY is solved

as follows

TMaxY = (8 + sign[1] ∗ 2

1
− 8.617) ∗ 1

.7071
= 1.959.

Therefore, the ray will not breach the y face during the first step, but will instead breach

the x face and enter into the cell to the right. TDeltaY and TDeltaZ are solved in a similar

28

17, 8

17.343, 8.617

0.7071
0.

70
71

Figure 3.1. First step in a cubic cell

29

17, 8

17.343, 8.617

0.7071
0.

70
71

Figure 3.2. First step in a non-cubic cell with Dy
Dx = 2

30

manner, such that for non-cubic cells, the following formula holds.

TDeltaY = invDirV ector[1] ∗ Dy
Dx

. (3.4)

3.1.3 Multiple Levels

The adaptive-focus mesh currently suffers from accuracy delinquencies. Nevertheless, it

is hoped that this problem is ameliorated soon, and a description of ray marching in such

a mesh is given in this section.

To accommodate for memory and message-passing constraints, a mesh with multiple

levels is passed to each processor. An example of one such mesh is shown in Fig. (3.3).

Although still under testing, the ray tracing algorithm has been modified to accomodate

such a mesh. Because the first step of a ray on a new level is handled in a unique fashion,

the general case of ray marching in the coarser regions is considered first. Recall from Eqn.

(3.4) that the values of TDelta are obtained from the direction vector and the normalized

lengths of the cell in the x, y, and z direction. Therefore, for general ray marching in a

coarsened domain, these values simply need to be scaled by the respective coarsening ratios

in each of the Cartesian directions. T DeltaYc = invDirV ector[1] ∗ Dy ∗ Dyc , Dx Dyf 8

where TDeltaYc represents TDeltaY on the coarser level, Dyc represents the cell width in

the y direction on the coarser level, and Dyf represents the cell width in the y direction on

the previous (fine) level. Similar expressions may be obtained for the x and z directions.

Notice that this scheme can work with any arbitrary number of levels, by simply using the

current level as the “coarse” level, and the previous level as the “fine” level.

3.1.3.1 First Step in a new level

The first step in a new level requires special attention because the values of tMax cannot

simply be incremented by tDelta of the previous level, nor can it simply be incremented

by tDelta of the current level. This is demonstrated by the four different segment lengths

through cell L1:01 of Fig. (3.4). The four rays have equivalent direction vectors, but each

enters the coarser cell through a different fine cell. With careful attention to the location

of the fine cell relative to the coarser cell, the four segment lengths of the rays can be

deduced. The cell indices of Fig. (3.4) are written as if the left and bottom edges represent

the boundary of the domain. However, even if this is not the case, equivalent indices can

be obtained by use of the modulus operator (%). Let cur represent a Uintah Vector that

contains the non-modultated cell indices of the finer cell after a new level has been reached,

but before the indices have been mapped to the new coarser level. Then, to get the cell

31

Figure 3.3. Multi-level mesh. The processor owns the fine mesh information indicated by
the red square, and is passed coarsened versions of the mesh for regions outside of the local
extents.

32

indices of the fine cell relative to the coarser cell, the following operation is performed: cur

% CR, where CR is also a Uintah Vector and represents the coarsening ratio between the

two levels in each of the three directions. For example, CR in the y direction is given as

follows,

CRy =
Dyc
Dyp

,

where Dyc represents the current cell spacing in the y direction, and Dyp represents the

cell spacing in the y direction on the previous level.

Notice that in Fig. (3.4), after the y face has been breached, but before cur is mapped

to the coarser level, the indices of cur would become 0,2; 1,2; 2,2; and 3,2. Performing

the modulus operation on these values relative to their respective coarsening ratios yields

the following values: 0,0; 1,0; 2,0, 3,0. Now, in order to determine the segment length of

each of the rays through cell L1:0,1,the value of tMax[dir] is subtracted from tMaxprev.

tMaxprev is the length from the ray origin to the level boundary breach, and is equivalent

in all 4 rays, and tMax[dir] is equal to the length from the origin of the ray to the location

where the ray exits cell L1:0,1, and is different for each ray. The distance of tMax[dir]

is a function of the location of the finer cell from which the ray entered the coarser cell.

Note that for the ray leaving cell L0:3,1, its tDeltaX value for this first step in the new

level is equivalent to tDeltaX of the previous level. Therefore, the tMaxX value correctly

describes the next x breach of this ray, and needs no adjustment for this first step in the

new level. The remaining cells L0:0,1, L0:1,1, and L0:2,1 however, will require an additional

3tDeltaX, 2tDeltaX, and tDeltaX, respectively, to be added to the current tMaxX values

in order to accurately represent the location at which the next x breach will occur in this

new level.

Noting the x component of cur, the indices are mapped to the appropriate factor that

will be used to become a multiple of tDeltaX in determining the new tMaxX as shown in

Table (3.1). This table holds when the component of the direction vector that corresponds

to the breached face is positive. When this component of the direction vector is negative,

the mapping is trivial, and is shown in Table (3.2). The mapping shown in these two tables

is accomplished by the variable lineup which is then used to scale tDelta and update tMax

as shown in Algorithm (3.5).

The other component (or components, if in three dimensions) follow a similar procedure.

If in three dimensions, the component normal to the page in Fig. (3.4) would be handled in

an identical fashion to the x component. The y component is also handled identically, given

33

L0:0,1 L0:1,1 L0:2,1 L0:3,1

L1:0,1

Figure 3.4. The segment length of the first step in a new level is a function of the location
of the fine cell of interest relative to the coarser cell.

index factor

0 3

1 2

2 1

3 0

Table 3.1. For positive components of the direction vector, mapping is shown of the
modulus of the index to a factor that will scale the tDelta values.

index factor

0 0

1 1

2 2

3 3

Table 3.2. For negative components of the direction vector, mapping is shown of the
modulus of the index to a factor that will scale the tDelta values.

34

that the usual incrementation of tMaxY is handled prior to the executions of Algorithm

(3.5). The modulus of the component of the index that corresponds to the breached face

will always return 0, giving a lineup value of 0 for the positive cases and a value of one

minus the coarsening ratio for the negative cases. When lineup is scaled with tDelta as

shown in Algorithm (3.5), then tMax in the first step of the new level will be assigned

appropriately such that the subsequent breach in the new level will occur on the wall of the

coarser cell, as indicated in Fig. (3.4).

35

for (int ii=0; ii¡3; ii++){
if (sign[ii]) {
lineup[ii] = cur[ii] % coarsenRatio[ii] - (coarsenRatio[ii] - 1);
}
else {

lineup[ii] = cur[ii] % coarsenRatio[ii];
}
}
tMax += lineup * tDelta[L];

Figure 3.5. This algorithm computes the tMax values for the first step in a new level.
sign[ii] returns true if that component of the direction vector is positive. At this point in
the algorithm, L has not yet been updated, and therefore represents the previous level.

36

3.1.4 Determining When a Ray Leaves the Domain

At present, RMCRT uses the Arches-specific variable ”cellType” to determine when a

ray has reached the extent of the flow domain. This approach uses a simple test of the cell

type to determine whether the next cell along a ray’s path is a flow cell or not. in domain =

(celltype[cur]==-1); //cellType of -1 is flow If so, the ray perpetuates, if not, the ray either

reflects or terminates depending on the boundary condition. For component generality,

volume fraction could be used as an alternative, so long as at each step, the location of the

ray is compared with the extents of the domain. Otherwise, a ray using volume fraction

to locate boundaries would attempt to pass through all non-wall boundaries and reference

values that do not exist, leading to segmentation violations. A naive approach to comparing

the location of the ray with the domain extents, as well as a recommended approach are as

follows.

The naive approach to determining when a ray has left the domain extents is to compare

each of the three components of the current location with the positive and negative extents

of the domain. This would lead to the following six comparisons.

low.x() <= cell.x() &&

low.y() <= cell.y() &&

low.z() <= cell.z() &&

high.x() > cell.x() &&

high.y() > cell.y() &&

high.z() > cell.z().

However, because for each step, the face through which a ray will breach is known, this

information can be used to reduce the number of comparisons to test whether or not the ray

has left the domain. For instance, if a ray has just breached an x face, only the x component

of the location with the x domain extents need be compared. Generalizing this approach,

the following is obtained,

low[face] <= cell[face]

&& high[face] > cell[face];

This simple modification saves 5% to 8% of the radiation compute time, and is the

recommended approach for use in combination with the volume fraction test.

In addition to implementing the domain-extent test, if volume fraction is to be used to

locate boundaries, it is also recommended that an error be thrown if a user attempts to

specify anything other than unity absorption coefficient values for inlet, outlet, and pressure

boundary conditions. Otherwise, rays would reflect off these gaseous boundaries, leading to

non-physical results.

37

3.1.5 Stopping Criteria

This section outlines the algorithm by which RMCRT determines when to cease the

propagation of a ray.

Let τ represent the optical thickness from the origin to the current location of a ray.

The optical thickness is defined as follows

τ = κx, (3.5)

where x is the distance between the origin and the current point of the ray. Then, by the

Beer-Lampert Law,

I = Ioe
−τ (3.6)

where Io is the intensity at the current point, and I is the fraction of that intensity that

arrives at the origin following attenuation through the medium. A threshold criterion may

be set whereby the ray termination point can be determined. For instance, if a threshold

value of 0.05 is chosen, the ray is terminated at the location where less than 5% of the initial

intensity at a given location would arrive at the origin. Mathematically, this criterion is

met when the following relation holds

0.05 > e−τ . (3.7)

Throughout most of the model development, the stopping criterion has been left in this

form, and has been evaluated for each step of each ray. However, because exponential

functions can be expensive to evaluate, an alternative approach was developed and tested.

This approach is as follows.

To avoid the evaluation of an exponential function at each step of each ray, a Beta

approach was developed wherein the total distance needed to meet the stopping criteria

based on the absorption coefficient of the origin cell was calculated. To demonstrate, let Tc

represent the threshold criterion. Then Eqn. 3.7 becomes

Tc > e−τ , (3.8)

and τ is computed by simply taking the natural log of both sides of Eqn. 3.8 to yield

ln(Tc) > −τ.

Dividing both sides by -1 and flipping the direction of inequality gives

38

τ > −ln(Tc). (3.9)

The term on the right of Eqn. 3.9 can then be pre-computed a single time for the whole

simulation. This value can be stored as a variable such as thresh, and the following condition

would be checked at each step, negating an exponential evaluation,

τ > thresh. (3.10)

Unfortunately, this approach to avoid an exponential evaluation is valid only when the

gradients of the absorption coefficient field are negligible, as it uses an assumption of

homogeneity to compute the stopping criterion. In most combustion simulations, this would

lead to premature and/or delayed termination of rays. Further, this modification leads to

a mere 2% reduction in execution time, which is in the noise of run-to-run variability. For

these reasons, the alternative stopping-criterion approach was abandoned.

39

3.1.6 Intrusion Cells

Intrusion cells are cells that lie within the computational domain, are not flow, inlet,

or outlet cells, and do not lie on the domain extents. Examples include solid objects that

are placed in the flow of a computational domain and geometric protrusions of the domain

boundary. It is often of value to predict radiative fluxes to intrusion cells, such as the effect

of placing an object in a fire. Further, the existence of intrusion cells changes the nature

of radiative heat transfer throughout the domain. The RMCRT algorithm is capable of

computing fluxes to the cells of intrusion objects, as well as handling the interaction between

intrusion boundaries and rays from other cells.

3.1.6.1 Fluxes to Intrusion Cells

To compute the fluxes to surfaces in a simulation that may or may not contain intrusion

cells, the RMCRT algorithm first tags which flow cells are adjacent to boundaries, and

which faces of the cells interface with the flow. Because intrusion can occur anywhere in

the domain, a cell iterator that loops through all interior cells has been implemented. Within

this cell iterator, a function called has a boundary is invoked. This function loops through

the six adjacent cells to the cell at hand, and returns “true” if at least one adjacent cell is

a boundary cell. In addition, has a boundary also returns a vector of enumerated values

that corresponds to the faces that are adjacent to a boundary. Currently, has a boundary

uses the Arches-specific variable“cellType” to determine if an adjacent cell is a flow cell or

not. This can be changed for generality, but as is, the algorithm is elegant and efficient as

it takes advantage of the integer values of cellType.

int UintahFace[6] = WEST,EAST,SOUTH,NORTH,BOT,TOP; bool hasBoundary =

false;

adjacentCell = c; adjacentCell[0] = c[0] - 1; // west

if (celltype[adjacentCell]+1) // cell type of flow is -1, so when cellType+1 isn’t false, we

know we’re at a boundary boundaryFaces.push back(WEST); hasBoundary = true;

adjacentCell[0] += 2; // east

if (celltype[adjacentCell]+1) boundaryFaces.push back(EAST); hasBoundary = true;

adjacentCell[0] -= 1; adjacentCell[1] = c[1] - 1; // south

if (celltype[adjacentCell]+1) boundaryFaces.push back(SOUTH); hasBoundary = true;

adjacentCell[1] += 2; // north

if (celltype[adjacentCell]+1) boundaryFaces.push back(NORTH); hasBoundary = true;

40

adjacentCell[1] -= 1; adjacentCell[2] = c[2] - 1; // bottom

if (celltype[adjacentCell]+1) boundaryFaces.push back(BOT); hasBoundary = true;

adjacentCell[2] += 2; // top

if (celltype[adjacentCell]+1) boundaryFaces.push back(TOP); hasBoundary = true;

If none of the above return true, then the current cell is not be adjacent to a wall.

At this point, the algorithm loops through the cells that have at least one boundary,

then loops through the vector of faces that are boundary faces. Second, for ray tracing to

occur in the proper direction, the face value is used to determine the proper orientation of

the rays.

3.1.6.2 Ray/Intrusion Boundary Interactions

The inclusion of intrusion cells modifies the behavior of radiative transport primarily in

two ways: emission from the intrusion cells to other flow cells; and reflection of radiation off

the intrusion boundaries, resulting in a change in ray direction and/or intensity. To account

for these phenomena, the RMCRT algorithm tests the cells along a ray path to determine

whether the ray has encountered a boundary. This is accomplished by a function call that

returns the cell type of the current cell. If the cell type is determined to be a wall, whether

of intrusion or domain-boundary, the subroutine that handles wall emission and reflection

is invoked.

3.1.6.3 Parallel Implementation

During patch domain decomposition, intrusion objects may be broken into two or more

different patches. Currently, the RMCRT algorithm uses a Uintah stencil7 variable type

to store the flux values of boundary and intrusion faces. However if a C++ std::map is

used, the following modification is used. If a std::map is to be used, the RMCRT algorithm

would create a map of maps as a way to identify which which cells on which patches contain

intrusion cells. The more general map uses the patch ID as its key, and as the value, another

map. This more specific map contains the cell indices and face as the key, and solved fluxes

as the values. A Uintah stencil7 variable, conversely, is a field variable and as such requires

no patch identification information. Six of the seven variables of the stencil7 (w,e,s,n,b,t)

are doubles that store the flux values of each of the faces. The faces that do not interface

between boundaries and flow remain initialized to zero. The seventh value (p) is set to zero

if none of the 6 faces of a flow cell interface with a boundary and to 1.00000000 if one or

more of the faces do. Because the p value of the stencil7 is a double, where only a boolean

variable would suffice, some memory is wasted. The benefit of the stencil7 approach is that

41

the algorithm to assign flux values is simple and efficient. In fact, when placed inside a

loop of all boundary and intrusion faces, the assignment is accomplished in a single line as

follows boundFlux[origin][face] = sumProjI * 2 * pi/ nFluxRays, where sumProjI is the

sum of the projected intensities of all rays, and nFluxRays is the number of rays used in

the flux ray loop.

3.1.6.4 Efficiency considerations

To improve the efficiency, it was assumed that the intrusion boundaries remain fixed in

time. Therefore, once the vector containing the faces of all boundary and intrusion cells

has been created, the need to loop through all cells before doing ray tracing is avoided, and

a simple vector iterator can be invoked, decreasing the computation time.

42

3.1.7 Reflections

This section explains how the model represents the physics of specular reflections within

a domain with non-black walls. The model is optimized to work with a structured domain

composed of rectangular hexahedrons with faces that are always aligned in the Cartesian

directions. The properties of this type of mesh greatly reduce the overhead of handling

reflections. To illustrate, consider the general form of the equation that determines the

post-reflection direction vector ~R given the original, incident direction vector ~Φ and the

surface normal vector ~N [95].

~R = ~Φ− 2(~N · ~Φ) ~N (3.11)

Equation 3.11 requires the use of three cosine functions, nine multiplications and three

subtractions. Clever use of the properties of the Cartesian-oriented mesh reduced this

overhead to a single multiplication. The proceeding paragraph explains.

In a Cartesian mesh, the six possible surface normals are as follows.

Nnorth =

 0
1
0

 (3.12)

Nsouth =

 0
−1
0

 (3.13)

Neast =

 1
0
0

 (3.14)

Nwest =

 −1
0
0

 (3.15)

Nbottom =

 0
0
1

 (3.16)

Ntop =

 0
0
−1

 (3.17)

Let face be a variable that can take on the value of x, y, or z, and represents the cell

face that is struck during a reflection. Then the only non-zero component of ~N is Nface.

43

Therefore, the other two components of ~R are equal to the corresponding components of ~Φ.

To compute the remaining component, Rface, we begin with

Rface = Φface − 2(N · I)Nface. (3.18)

Recognizing that N ·I = ||O||cos(θi), and that the magnitude of Φ is always unity, equation

3.18 may be written as

Rface = Φface − 2cos(θi)Nface. (3.19)

Because the definition of cosine is the adjacent component divided by the hypotenuse of

the triangle formed between ~Φand ~N , we substitute cos(θi) =
Φface

Nface
. With this substitution,

equation 3.19 becomes

Rface = Φface − 2
Φface

Nface
Nface.

Canceling Nface yields

Rface = Φface − 2Φface = −Φface. (3.20)

In other words, Rface is simply the negative if Φface. Therefore, to determine the new

direction vector following a reflection, one need only change the sign of the component that

corresponds to the face that was struck during the reflection. This is illustrated in figure

3.6.

What further adds to the simplicity of reflections in Cartesian grids is that the ray

marching scheme is minimally affected by a reflection. Recall from section (3.1) that when

the ray location surpasses one of the Tmax values, a step is taken in the corresponding

face direction. Conveniently, the sequence in which Tmax values are updated, and thus the

sequence in which x, y, and z faces are breached remains unchanged even after reflections

(see figure 3.7). This means that the algorithm need not reset the values of Tmax and TDelta

following a reflection. The only variable that requires adjustment is the step variable. This

variable determines whether the ray will step in the positive direction of face or the negative

direction of face. Because it is a function of the direction vector, when the face component

of the direction vector is changed, it too must be changed in a similar manner. Therefore,

similar to equation 3.20, stepface is assigned to be the negative of its current value.

One caveat of the ray tracing algorithm is that the reflection condition is not triggered

until after the ray has stepped outside the domain. Neglecting to account for this would

lead to inaccuracies such as reflections occurring within the boundary rather than on the

surface. This is remedied by creating a variable that lags behind the current ray location by

44

N

I R

Iy Ry

Figure 3.6. Specular reflection about the surface normal, N . Note that Ry = −Iy.

Figure 3.7. Reflection ray marching. This figure demonstrates that the values of Tmax
and TDelta need not be adjusted after a reflection. The x and y faces are breached in the
same order even after a reflection. For example, after the ray has reached the first non-black
boundary, indicated by point A, the following breach occurs at a y face as shown both at
point B and point Br. Subsequently, there is another reflection at point Br followed by an
x breach both at points C and Cr.

45

one step. Then, upon reaching the reflection condition, the current ray location is assigned

to the value of the lagging variable.

The RTE is also minimally affected by reflections. For a moment, assume that in figure

3.7, a reflection does not occur at point A, and that the ray location is currently at point

B in figure 3.7. Then the black body intensity from the current cell (in this case the cell

with the dotted border) is as follows,

Ib = σT 4
cur/π,

where Tcur represents the temperature of the current cell. Then following augmentation by

absorption and emission along the path back to the origin, the intensity from this cell is

Ii = Ib[exp(−τA)− exp(−τB)]. (3.21)

Let us now investigate the effect on Ii for the case in figure 3.7 where reflections do occur

at the domain boundaries, and the ray is currently at position Br of figure 3.7. The current

cell would then be the cell to the left of the dotted cell, and the intensity that reaches the

origin from the segment length of A to Br is

Ii = Ib[exp(−τA)− exp(−τBr)]fs, (3.22)

where fs represents the remaining fraction of spectral intensity following all previous

reflections. In this case, fs = ρA,where ρA is the reflectivity of the boundary at point

A. Note the minimal differences between the formula for non-reflected incoming intensity,

equation 3.21 and the expression for reflected incoming intensity, equation 3.22.

To demonstrate the procedure of determining incident intensity after a series of reflec-

tions, consider the intensity emitted between points Cr and Br attenuated back to the

origin, where fs = ρBrρA. This scenario may be viewed in a piece-wise fashion as follows.

A small amount of intensity is emitted between points Cr and Br based only on the optical

thickness between the two points, not the running total of the optical thickness back to the

origin. This intensity would then be scaled by ρBr and then attenuated according to Beer’s

Law, again using only the optical thickness between to point A and point Br. This value

would then be scaled by ρA, and finally attenuated by Beer’s law using the optical thickness

from the origin to point A. Mathematically,

Ii = Ib[(exp(0)− exp(−(τCr − τBr)))ρBr(exp(0)− exp(−(τBr − τA)))ρAexp(−τA). (3.23)

46

However, for any series of consecutive, independent optical thicknesses, e.g. τ1, τ2, and τ3,

the following relationship holds

[exp(−τ2)− exp(−τ3)]exp(−τ1) = exp(−(τ1 + τ2))− exp(−(τ1 + τ3)).

Furthermore, by the commutative property of multiplication, ρBr and ρA of equation 3.23

are factored into the single term, fs and placed at the end of the equation. This yields

Ii = Ib[exp(−τBr)− exp(−τCr)]fs. (3.24)

This equation is mathematically equivalent to equation 3.23, but is much more tractable as

it does not necessitate the storage of independent optical thicknesses for each ray section

between reflections. It requires only the running total of the optical thickness as well as the

optical thickness from the prior step.

In RMCRT, equation 3.24 is repeated for each step of each ray to get the total contribu-

tion for all rays. In the model, this is accomplished in a ray-marching loop within the ray

loop as sumI += sigmaT4OverPi[prevCell] * (expOpticalThick prev - expOpticalThick)

* fs, where sumI is the ongoing sum of all steps of all rays for a given cell at a given time

step.

3.1.8 Verification Testing of the Reflection Condition

To assess the accuracy of the model, results were compared against an analytical solution

provided in section 13.2 of Modest [87].

Here two infinite parallel black plates are separated a distance L apart. The medium

between the plates is gray, with an optical thickness between the plates of τL. The solution

to the radiative-flux divergence at location τ is given by,

dq

dτ
(τ) =

−2σ(T 4
w − T 4

m)[E2(τ) + E2(τL − τ)]

1 + (1/ε− 1)[1− 2E3(τL)]
,

where τ = κx and τL = κL. E1 and E2 are exponential integrals, and are given by

E1(x) =

1∫
0

e−x/µ

µ
dµ,

E2(x) =

1∫
0

e−x/µdµ,

where µ = cos(θ). In this case, the following values were used in the calculation of the exact

solution to the radiative-flux divergence,

47

τL = 1,

Tw = 1000K,

Tm = 1500K,

ε = 1.

To create a numerical model of an infinite parallel plates, a cubic domain with black top

and bottom surfaces and perfectly reflecting side surfaces was implemented.

The analytical solution at varying values of x that corresponded to the cell centered

locations of the numerical solution was computed using a MATLAB script. To compute

E1 and E2, the script used trapezoidal integration of 105 discretization points for dµ. The

first nine digits of the obtained values of the exponential integrals remained insensitive

to a factor of 10 increase in the discretization, and the first six digits of the exponential

integrals matched the six digits tabulated by Modest. The advantage of computing the

exponential integrals over using the table is that we are now not limited to the relatively

sparse number of values in Modest’s table, i.e. we computed the exponential integrals at

cell centers for any arbitrary resolution without resulting to interpolation between tabulated

values. Furthermore, the computed values have a tolerance of 10−9 rather than 10−6. The

exact solution that results from using the computed exponential integrals is indicated by

the blue lines of figures 3.8 and 3.9. The values of the radiative-flux divergence computed

using RMCRT are given in green in the same figures.

The L2 error norms were computed using the values at the cell centers of the discretized

points along the vertical line between the two plates as well as the values of the exact

solution at corresponding locations. The equation used for the L2 norm is given by

L2 =

nc∑
i=0

√
(Ei −Ni)2,

where Ei and Ni represent respectively the exact solution and the numerical solution at a

given cell center. nc represents the number of cells between the plates and is given by

nc =
L

dx
,

where dx is the width of a cell, and L is the distance between the plates. The L2 norm as

a function of ray number, N, converged at the expected order, O1/2 for 1 < N < 105. For

48

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2.5

3

3.5

4

4.5

5

5.5
x 10

5

d
iv

Q
 [
W

/m
3
]

location between plates [m]

Exact

RMCRT

Figure 3.8. Exact solution for the radiative-flux divergence compared to RMCRT with
1000 rays and 413 cells for Modest’s Benchmark case 13.2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

3.5

4

4.5

5

5.5
x 10

5

d
iv

Q
 [

W
/m

3
]

location between plates [m]

Exact

RMCRT

Figure 3.9. Exact solution for the radiative-flux divergence compared to RMCRT with
100,000 rays and 413 cells for Modest’s Benchmark case 13.2.

49

values of N greater than 105, the convergence rate slowed. This is explained by the finite

error from the threshold error and grid resolution error becoming non-negligible for large

values of N . The pink and red circles shown in figure 3.10 have larger N and finer grid

resolutions, allowing for an analysis of ray error.

50

0 1 2 3 4 5 6
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

lo
g

 o
f

L
2

e
rr

o
r

N
o

rm

log of Number of Rays

y = − 0.49218*x − 0.24088

data 1

 linear

data 2

data 3

Figure 3.10. Convergence rate of the L2 error norm of RMCRT on benchmark 13.2 as a
function of ray number from 1 to one million rays. The blue circles represent the L2 error
norms from RMCRT data with a ray threshold of 10−3 on a grid of 413 cells. The red line
is a curve fit of these norms. The pink circle represents the L2 error norm of RMCRT with
N=1,000,000 rays and a threshold of 10−4. The red circle represents the L2 error norm of
RMCRT with N=1,000,000 and a threshold of 10−4, but on a grid of 1013 cells.

51

3.1.9 Scattering

Radiative scattering is the re-direction of radiation within participating media. Three

separate phenomena are responsible for this re-direction [87].

1. Reflection off the surface of particles in the media.

2. Refraction of the radiation after passing through a particle.

3. Diffraction of radiation that passes close to particles.

Generally, the physical scale at which combustion simulations take place is significantly

larger than the size of the particles in the media. Therefore, in the RMCRT model, the

three scattering phenomena are not differentiated and a single scattering coefficient, σs is

used for a given computational cell.

At present, RMCRT is capable of performing homogeneous scattering. However, when

scattering coefficient data is available to the radiation model, a simple adjustment from

sigma s to sigma s[c] will allow for non-homogeneous scattering.

RMCRT models scattering as follows.

The scattering length, σl, is selected as,

σl = − log(R)

σs
, (3.25)

where R is a random number that varies between 0 and 1, and σs is the scattering coefficient

of the current cell at the time the scattering length is calculated, which is either the origin, or

the cell at the location where the most recent scattering event has occurred. Concurrently,

the current length, lc is set to zero. As the ray propagates throughout the domain, lc is

updated as follows

lc = lc + ls, (3.26)

where ls is the segment length of the current step, and is computed using disMin, a variable

from the ray marching algorithm, and the cell width in the x direction, ∆x, as follows,

ls = ∆x ∗ disMin. (3.27)

lc is updated as the ray propagates until the following condition is met

lc = σl. (3.28)

Once lc has met or exceeded the size of σl, a scattering event occurs.

52

At a scattering event, a new direction for the ray is chosen. For isotropic scattering,

the direction is chosen in the same manner as the original direction for a non-boundary cell

whose rays will subtend a full 4π Sr. This is accomplished as follows.

z = 2R− 1 (3.29)

r =
√

1− z2 (3.30)

φ = 2πR, (3.31)

where R is a random number uniformly distributed between 0 and 1, and z, r, and φ are

the components of the direction vector in polar coordinates. For convenience, these values

are converted to Cartesian coordinates, as follows

~d = rcosθ, rsinθ, z, (3.32)

where ~d is the new direction vector. To avoid division in later computations the inverse of

this vector is calculated as follows,

~dinv =
1

~dx
,

1

~dy
,

1

~dz
. (3.33)

In accordance with the ray marching algorithm, new step and sign values are assigned.

Each of the three components of step and sign are assigned based on the corresponding

components of the new direction vector. If a component of the direction vector is positive,

then the corresponding component of step and sign are assigned the value of 1. Otherwise,

the values of -1 and 0, respectively, are assigned. Then, based on the current location of

the ray, the inverse direction vector, sign, the values of tMax and tDelta are calculated as

was demonstrated in section (3.1).

tMaxi = curi + signi
∆i

∆x
− locationi, (3.34)

tDeltai = abs(~di)
∆i

∆x
, (3.35)

where i is the x, y, or z component, and ∆i
∆x is the ratio of the cell width in the ith direction

relative to the cell width in the x direction. step is then used in the incrementation/

decrementation of cur, the variable that represents the indices of the current cell.

Let face represent x, y, or z, and assume that it is updated based on the cell face

through which a ray has most recently passed. During some scattering events, there is a

53

sign change for the face component of step, e.g. the x component of step was -1 prior to a

scattering event that occurred on an x cell face, yet +1 after the scattering event. In this

circumstance, the ray is scattered back into the cell through which it would have passed

had it not scattered. To account for this form of scattering, cur is assigned to the previous

cell’s indices. Note that in other scenarios, step may change sign, yet cur need not be

re-assigned to the previous indices. For instance, if the x component of step changes sign at

a scattering event that occurs on the y face, then simply the adjustment of step and sign

will account for the correction of the order in which the ray will march from the cells in the

domain. In this case, no cell need be referenced more than once as there is only one segment

length per cell along the ray’s path. In the prior case, however, there will be multiple ray

segments within the same cell, requiring cur to be referenced more than once for intensity

and attenuation calculations. The RMCRT model accounts for this phenomenon.

For the implemented numerical method of scattering, scattering events always occur on

cell faces. Then, at a scattering event, one of the three tMax values will be zero since the

ray location will lie on a cell face. The corresponding tDelta is added to this tMax value

to avoid erroneously stepping immediately in the face direction.

After each scattering event, lc is reset to zero, and a new scattering length is chosen

according to Eqn. (3.25). This procedure continues until the ray is terminated according

to the threshold value.

3.1.9.1 Verification

The selected scattering verification case was described by Siegel [96]. Briefly, this case

includes a 1m unit cube with cold, infinite parallel plates on the top and bottom, and cold,

mirror sides. The cube is filled with absorbing, emitting, scattering media at T = 64.7K.

Analytical solutions were given for the surface fluxes at the top and bottom plates at varying

optical thickness, and varying scattering albedo, ω.

3.1.9.2 Properties of pulverized coal particles

In the Arches combustion simulations, a common particle in the media is pulverized

coal particles. To accurately calculate a scattering coefficient for participating media, the

complex index of refraction of the particle is used as an input parameter. Experimental

studies in the field suggest that a value of 1.8− 2i, where i is the square root of -1, can be

used to obtain effective radiative properties of pulverized coal properties in a radiative field

where the dominant wavelengths are on the order of 10µ m [97]. The RMCRT model is

54

scattering albedo=0

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Optical Thickness, !

Ra
di

at
ive

 F
lu

x,
 (w

/m
2)

0.3

0.6

0.8

0.9

0.95

Figure 3.11. Computed and analytical surface fluxes along the bottom plate of the case
described by Siegel at varying optical thicknesses, and scattering albedo.

55

set up to receive this input value, which will be used when the non-homogeneous scattering

properties become available.

CHAPTER 4

FLUX CALCULATIONS

57

4.1 Explanation of Boundary Fluxes

To compute the boundary fluxes, a similar methodology as was implemented for the

virtual radiometer model, and the 6 Flux method was used. In RMCRT, rays are generated

over a hemisphere, rotated into the the appropriate hemisphere for the boundary at hand,

traced as usual, then weighted by the cosine of the polar angle from the surface normal.

The details of each of these steps are given below.

4.2 Generating Rays on a Hemisphere.

Because a hemisphere is symmetric about the surface normal, the azimuthal, φ, is

assigned simply as 2πR1, where R1 is a random number between 0 and 1, and thereby

achieving the appropriate range of φ of 0 to 2π. For the polar angle, θ, because the area of

a given ring of the hemisphere is a function of the polar angle, our random number is scaled

by the arccosine in order to achieve equidistribution of rays throughout the solid angle,

θ = acos(R2).

4.3 Rotating Rays Onto a Hemisphere

When a ray direction has been selected, initially, the ray will be oriented in the positive

z direction, as if it were originating from the top face of a cell. This direction is adjusted to

lie within the appropriate hemisphere for the face at hand. For a structured Cartesian mesh,

all of the surface normals of the cells are aligned in the coordinate directions. This greatly

simplifies the rotation of the rays as it negates the necessity of using a rotation matrix,

as was done for virtual radiometers with arbitrary orientations. To re-orient a rays into a

new direction such that the rays originate from the face at hand, a simple rearrangement

of the vector indices was implemented. This adjustment takes place as follows, where face

is an enumeration with the following order: E,W,N,S,T,B. Notice that this enumeration

is slightly different than the face enumeration that is passed in from a call to the Uintah

type “face” iterator, which has the order: W,E,S,N,B,T. A simple array called RayFace,

with values [1,0,3,2,5,4] is used to ameliorate the problem, as the RayFace[Uintah face] will

return the proper faces. With the proper face enumeration, the direction is reassigned onto

the face at hand, and the sign of one of the components may be reversed as well, if the

current face is E,N, or T, as shown in Tab. (4.1). Numerically, this appears as

Vector tmpry = directionVector;

directionVector[0] = tmpry[indexOrder[0]] * signOrder[0];

directionVector[1] = tmpry[indexOrder[1]] * signOrder[1];

58

directionVector[2] = tmpry[indexOrder[2]] * signOrder[2];

One may note that for any face, the ray direction will always point toward the inside of

the cell, placing the first segment length of a ray through the origin cell. This is because the

operation that loops through the cells in the domain to identify which cells have boundary

faces, loops through the interior cells. One could imagine a scenario where the algorithm

would loop through the “extra” or boundary cells and identify which of those have faces

that are adjacent to the flow cells. In this scenario, several modifications to the algorithm

would be necessary. First, the positive and negative faces would need to be reversed, as a

west boundary face would need to have rays placed on its east face in order to determine the

flux at the actual interface between flow cells and boundary cells. Second, the hemisphere

would then be on the outside of the cell face as opposed to the inside, as rays should not

be traced through boundary material. This would lead to the third adjustment that would

need to be made, which affects the intensity solver of the ray tracer. Namely, the first

cell being referenced for temperature and absorption coefficient would need to be on a lag,

so as to not reference the origin cell for the first segment length, since the ray would not

pass through the origin cell at all, but would begin at its face and continue outward. For

these reasons, I have chosen to have RMCRT loop through the interior cells to find those

with boundary faces as opposed to looping through exterior cells. Therefore, flux rays are

generated at the boundary of the domain and are oriented to point inward in the origin cell.

4.4 Shifting the Rays To a Cell Face

Similar to adjusting the ray location from a default hemisphere, ray origins on a plane

are generated on a default surface, and are adjusted onto the proper face. By default, points

that represent the ray origins are generated on the S face (see Fig. (4.1)), which are then

moved onto the appropriate face by reordering the indices and applying a shift value if the

face of interest is E,N, or T. This method holds for non-cubic cells as well, given that the

unity shift value is scaled by the ratio of Dy to Dx for the y direction, and Dz to Dx for

the z direction. Numerically, this appears as

Vector tmpry = location;

location[0] = tmpry[indexOrder[0]] + shift[0];

location[1] = tmpry[indexOrder[1]] + shift[1] * DyDxRatio;

location[2] = tmpry[indexOrder[2]] + shift[2] * DzDxRatio;

59

face new direction index order

0 2,1,0

1 2,1,0

2 0,2,1

3 0,2,1

4 0,1,2

5 0,1,2

face new direction sign

0 -1,1,1

1 1,1,1

2 1,-1,1

3 1,1,1

4 1,1,-1

5 1,1,1

face new location index order

0 1,0,2

1 1,0,2

2 0,1,2

3 0,1,2

4 0,2,1

5 0,2,1

face new location shift

0 1,0,0

1 0,0,0

2 0,1,0

3 0,0,0

4 0,0,1

5 0,0,0

Table 4.1. Reordering of indices for adjustment of ray direction and origin location as a
function of cell face. Also shown are the values that allow for location shift and direction
sign change.

60

Figure 4.1. A hexahedron with its 6 faces labeled.

61

4.5 Flux Ray Tracing and Weighting of Rays

Once a location and direction have been specified for a given ray, ray marching, and

the update of intensity are handled in the same manner as is done for the flux divergence

solver, and the virtual radiometer solver. To avoid code redundancy, the ray marching and

intensity solver have been abstracted into an independent method called “updateSumI.”

Because this method returns a running total of intensity for a given cell, and because the

boundary flux solver weights rays according to unique values of cos(θ), the intensity of each

ray must be known. To allow for this, the current total of intensity is subtracted from the

previous total intensity, to yield a unique intensity for the ray, which is then weighted by

the cosine of the polar angle, to give the flux contribution from that ray. The flux from all

rays are summed and weighted by the solid angle that each subtends, to yield an incident

flux for the face at hand, as follows

q =
N

2π

N∑
ir=1

Ii(r)cos(θ(r)),

where Ii(r) and θ(r) are the incident intensity and polar angle, respectively, for a given ray,

and N
2π is the solid angle that each ray subtends. Notice that the solid angle is assumed

constant, given the equi-distribution for a large number of rays, and is therefore removed

from the summation, improving numerical efficiency.

4.6 Ray Convergence Analysis

Verification testing was performed on the boundary flux calculations. The benchmark

case is the Burns and Christon case which has been used in prior verification for the flux

divergence results, but also contains flux results for the same cubic, trilinear case with cold

black walls. Agreement between computed results and the Burns converged results was

obtained. An increase in the number of rays led to a decrease in the L1 error norm at the

expected convergence of 1
2 order. See figures (4.2,4.34.44.5).

To ensure RMCRT did not have a bias in one or more of the Cartesian directions, the

L1 error norms from the 2 center lines of each of the 6 faces of the unit cube of the Burns

case were analyzed. Four of these twelve center lines are found by varying the x values from

zero to one. Similarly, there are 4 lines in the y, and z directions. Figure (4.6) demonstrates

the lack of a bias, and therefore invariability of the L1 error norm as a function of direction,

which is as expected for this symmetric case.

62

0 2 4 6
−3

−2.5

−2

−1.5

−1

−0.5

0

log of number of rays

lo
g

of
 L

1
er

ro
r

Ray convergence for Boundary Fluxes

y = − 0.48*x − 0.086

data 1
 linear

Figure 4.2. Ray convergence for Boundary Fluxes.

0 0.2 0.4 0.6 0.8 1
0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19
10M rays

Distance [m]

Fl
ux

 [w
/m

2]

exact
rmcrt

Figure 4.3. RMCRT vs. Burns’ converged solution at 10M rays.

63

0 0.2 0.4 0.6 0.8 1
0.08

0.1

0.12

0.14

0.16

0.18

0.2
100k rays

Distance [m]

Fl
ux

 [w
/m

2]

exact
rmcrt

Figure 4.4. RMCRT vs. Burns’ converged solution at 100k rays.

0 0.2 0.4 0.6 0.8 1
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22
1k rays

Distance [m]

Fl
ux

 [w
/m

2]

exact
rmcrt

Figure 4.5. RMCRT vs. Burns’ converged solution at 1,000 rays.

!"

!#!!$"

!#!!%"

!#!!&"

!#!!'"

!#!("

!#!($"

(" $")" %"

!"
#$
%&
'
#

(&)*+#

*+,-./0"1"

*+,-./0"-"

*+,-./0"2"

Figure 4.6. Invariability of the L1 error norm of the fluxes as a function of direction for
the symmetric Burns and Christon case.

64

4.7 Storage

The Uintah framework is set up in such a way that the variable types that are used

for storage in the data warehouse allocate memory sufficient to store a value for each cell

in the domain. In general, not all flow cells in the computational domain are adjacent to

a boundary, and therefore need not contain a value for a boundary flux. Therefore the

use of Uintah data types ties up memory that is never used. It was hypothesized that

a map variable could be used for only the locations where values for the boundary flux

exist, thereby avoiding needless memory allocation. To test this, a std::map variable was

implemented where values for the boundary flux of cells that contain a boundary, such as

walls and intrusion. This map was labeled “cellToValuesMap.” The key to the map was a

std::vector comprised of the cell index and enumerated face value, and the mapped value

was the flux. To handle the complexity of multiple patches in a domain, a larger map was

created that houses the patchID as the key, and the corresponding cellToValuesMap as the

value. The time required to generate these maps was comparable to the time required to

loop through the cells in a patch and assign only a face value. Similarly, the time required

to reference the map and solve for the fluxes on these mapped surfaces was comparable to

the time required to solve the fluxes using CCVariables. These results are shown in Tab.

(4.2).

However, because the use of these maps increased the complexity of the algorithm,

particularly for use in multiple levels, and no increase in execution time was attained,

the use of maps was abandoned and a uintah stencil7 variable was selected for ease of

programming and code maintenance.

65

std::map CCVar

Create 0.22 sec 0.14 sec

Run 212.22 sec 212.29 sec

Table 4.2. Time comparison to create and run std::map vs Uintah’s CC Variables.

66

4.8 Volumetric Integral Vs Surface Integral

The RMCRT algorithm is coupled with the combustion simulation via the enthalpy

solver. It computes the radiative flux in W/m2 and the radiative flux divergence in W/m3

for boundaries and flow cells, respectively. By the Gauss Divergence Theorem, two methods

exist to compute the radiative flux divergence, specifically, a volumetric method, and a

surface method,

∫
V

∇ · qdV =

∮
S

q · ~ndS, (4.1)

where V is the volume of the cell, S is the surface of the cell, and ~n is the surface

normal for a given face of the cell. Due to a lack of data in the literature, prior to this

research, it was unclear which of the two approaches would give the highest accuracy/cost

ratio. Therefore, both methods were developed and tested.

The Volumetric Method

The volumetric method involves solving for ∇ · q using Eqn. 4.2 [87].

∇ · q = κ(4πIout −
∫
Ω

IindΩ). (4.2)

The second term on the right hand side of Eqn. 4.2 is solved readily given the tempera-

ture of the origin cell, and the first term is solved by selecting ray origins that are randomly

distributed throughout the volume of the cell from which rays are traced as explained in

section (3.1).

The Surface Method

The surface approach to solving for ∇· q via a surface integral over the fluxes on the six

faces of a Cartesian hexahedron.

Because RMCRT traces intensity histories throughout the domain, we make the follow-

ing substitution for q and q · ~n in Eqn. 4.1,

q =

∫
Ω

IcosθdΩ

q · ~n =

∫
Ω

Icos2θdΩ, (4.3)

67

where θ is the angle between a given direction of intensity and a surface normal. Eqn.

4.3 is discretized as follows

q · ~n =
2π

N

N∑
r=1

(Icos2θ),

whereN is the number of rays traced per face. Substituting this into Eq. 4.1, and discretizing

the surface integral into the sum over the positive and negative sides of each of the six faces

of a hexahedron yields ∫
V

∇ · q =
2π

N

12∑
f=1

(
N∑
r=1

(Icos2θ)dS(f)

)
, (4.4)

where dS is a function of the current face, f , and is equal to either ∆x∆y, ∆x∆z, or ∆z∆y,

where ∆x, ∆y, and ∆z represent respectively the length, width and height of the cell. The

justification for integrating over 12 faces is that for each of the six faces, a net flux is solved.

Algorithmically, this is accomplished by appropriately weighting the intensities of each face

by either +1 or -1 as shown in table 4.3.

The face normals are ordered as shown in Fig. 4.7.

Notice that Eq. 4.4 gives units of watts. If we assume homogeneous properties within

a cell, then to obtain the flux divergence, which has units of W
m3 we need only divide by

volume to obtain ∫
V

∇ · q =

∑12
f=1

(∑N
r=1(Icos2θ)dS(f)

)
∆x∆y∆z

. (4.5)

Recognizing that dS for any given face is the volume divided by either ∆x, ∆y, or ∆z,

we introduce a new variable, Dx,y,z that represents the length of the cell that is normal to

the current face. With this substitution, Eqn. 4.5 becomes∫
V

∇ · q =

12∑
f=1

∑N
r=1(Icos2θ)

Dx,y,z(f)
. (4.6)

Equation 4.6 gives reasonable results, but suffers from sensitivity to Dx,y,z, in that the

error of the solution is inversely proportional to the cell length. This is because in the

limit that Dx,y,z approaches zero, the incident flux of each negative face should respectively

equal the outgoing flux of each positive face, and vice versa. However, in practice, this

will never be the case, because of the error inherent to a finite population of randomly

distributed rays. So, for a fixed number of rays per face, and a decreasing cell size, the ray

error remains constant while the analytical solution to the terms q−inc−q
+
out approaches zero.

Therefore, the error norms at the limit of infinitesimal cell lengths approaches infinity. This

is demonstrated in Fig. 4.8.

68

face sign

0 -1

1 1

2 1

3 -1

4 -1

5 1

6 1

7 -1

8 -1

9 1

10 1

11 -1

Table 4.3. Signs of each of the incident and outgoing faces of a cube.

1 023

4

5

6

7

8

9

10

11

Figure 4.7. Ordering of the 12 face normals of a hexahedron.

69

!"#"$%&$'&(")"*%'+,-"
./"#"$%011'&"

)*%,"

)*"

)+%,"

)+"

)$%,"

$"
$" $%," +" +%," *" *%,"

!"
#$
%&
'$
&(
")
*
&+
,#
&

!"#$%&)-."!/0"(&

Figure 4.8. Grid convergence of the 12-flux method of computing the flux divergence.
Note the positive slope indicating growing error with finer mesh resolutions.

70

The dependence on the cell size of the 12-flux method was avoided by implementing a

clever method suggested by Dr. Philip Smith. This is accomplished by recognizing that the

6 outgoing fluxes can be computed not only by ray tracing, but by the emissive power of

the cell itself. To demonstrate, consider the definition of a radiative-flux divergence as the

sum of the net fluxes of the faces of a cell,

∇ · q =
qE + qW

∆x
+
qN + qS

∆y
+
qT + qB

∆z
,

where a positive value for a net flux represents a positive flux out of the cell. Each of the

net fluxes is then be broken into its outgoing and incident fluxes as follows.

∇·q =
(qEout − qEinc) + (qWout − qWinc)

∆x
+

(qNout − qNinc) + (qSout − qSinc)
∆y

+
(qTout − qTinc) + (qBout − qBinc)

∆z
.

(4.7)

In this form, we immediately see that we can separate out the outgoing fluxes and represent

them by the emissive power of the cell, i.e.

qEout + qWout + qNout + qSout + qTout + qBout =
4πσT 4

π
(4.8)

Before we can make this substitution, we transform Eqn. 4.7 into a form that doesn’t have

unique denominators. This is accomplished by assuming that the optical thickness of the

media is not sufficiently high to absorb all incident radiation in a single cell width. Indeed,

we must account only for the portion of the radiation that is absorbed within the cell. With

this consideration, Eqn. 4.7 becomes

∇·q = κ∆x
(qEout − qEinc) + (qWout − qWinc)

∆x
+κ∆y

(qNout − qNinc) + (qSout − qSinc)
∆y

+κ∆z
(qTout − qTinc) + (qBout − qBinc)

∆z
,

(4.9)

which simplifies to

∇ · q = κ(qEout − qEinc + qWout − qWinc + qNout − qNinc + qSout − qSinc + qTout − qTinc + qBout − qBinc).

With the denominator now eliminated, we can now make the substitution proposed in Eqn.

4.8 and obtain

∇ · q = κ(−qEinc − qWinc − qNinc − qSinc − qTinc − qBinc) +
κ4πσT 4

π
.

In discrete form, this becomes similar to Eqn. 4.6, but with a loop over only 6 faces and

an extra term which represents the other 6. Specifically,

71

∫
V

∇ · q =
2π

N
κ

6∑
f=1

(
N∑
r=1

Icos2θ

)
+ 4κσT 4, (4.10)

where the summation over 6 faces includes faces 0, 3, 4, 7, 8, and 11 of table 4.3. Notice

that we are no longer taking the difference between two fluxes that are equivalent in the

limit of infinitesimal cell sizes. We therefore avoid the increase in error that occurred in the

12-flux method at finer resolutions, with the added benefit that we perform ray tracing on

only half the number of faces. This 6-flux method produces results comparable to those of

the volumetric method, and converges with grid resolution at an approximately first order

rate (see Fig. 4.9). The down-side of this method is that to obtain accuracy comparable

to that of the volumetric method, it requires 6X the number of rays per cell, which leads

to an increase in the computation time by the same factor. The benefit of this method

is that in the process of computing the radiative-flux-divergence, the flux for each face is

computed, essentially for free. This value could be labeled and stored for later use such as

determining the radiative fluxes through any arbitrary surface of the domain. Nevertheless,

the objective of most simulations rarely necessitates the computation of every flux to every

cell face in the domain. For this reason, a factor of 6 increase in the computation time could

not be justified, and the volumetric method was selected for the RMCRT divQ calculations.

Naturally, RMCRT flux calculations are performed in a surface manner.

72

!"#"$%&'()*+"$"'&,*')"
-."#"'&///01"

$2&1"

$2&,"

$2&*"

$2&2"

$2"

$%&1"

$%&,"

$%&*"

$%&2"

$%"
'&2" '&*" '&," '&1" %" %&2" %&*" %&," %&1" 2"

!"
#$
%&
'$
()
"*
+
(,
-#
.(

(

!"#$%(#*/0(*12"!34")(

Figure 4.9. Grid convergence analysis of the 6-Flux method of benchmark1. Grids of size
33, 93, 273,413, and 813 were analyzed. The L1 error norm decreases with mesh refinement
at an approximately first order rate.

CHAPTER 5

COUPLING THROUGH THE ENTHALPY

EQUATION

74

RMCRT is fully coupled with the thermal energy balance via the radiative source term.

At the onset of a simulation, initial conditions including temperature and absorption coef-

ficient fields are referenced by RMCRT. The radiative source terms produced by RMCRT

are subsequently referenced by the enthalpy equation, which, in the Arches component for

example, reads, ∫
V

∂ρh

∂t
dV +

∮
S
ρuh · dS =

∮
S
k∇h · dS−

∮
S
q · dS , (5.1)

for surfaces, and

∫
V

∂ρh

∂t
dV +

∮
S
ρuh · dS =

∮
S
k∇h · dS−

∫
V

∇ · q, (5.2)

for flow cells, where h is the sum of the chemical plus sensible enthalpy, q is the radiative

flux, k is a diffusion coefficient used with a Fourier’s law form of the conduction term, and

the pressure term is neglected [98]. The temperature of each cell is then updated based on

the enthalpy change in the given timestep and the heat capacity of the cell. During the next

radiation solve, RMCRT references the updated temperatures and temperature-dependent

absorption coefficients.

CHAPTER 6

RADIATION PROPERTIES

76

6.1 Spectral Properties

A method to generate spectral data for gas and particle absorption coefficients and

particle scattering coefficients was developed by Lyubima Simeonova during her Master’s

thesis at the University of Utah [99]. This full spectrum k-distribution (FSK) property

model was implemented into the ARCHES component. Radiation is assumed to be con-

trolled by motions on the resolved scale, and no sub-grid radiation model is taken into

account. A similar assumption was made by Goncalves dos Santos, et al. [9]. Radiation

properties oscillate sharply as a function of wavelength. The FSK model reorders the

property values into a smoothly-varying g-space, where the cumulative k-distribution, g, is a

non-dimensional, Planck-function-weighted, reordered wavenumber. The general derivation

of the FSK method is given by Modest [87], and the specific implementation in the ARCHES

component is explained in [99].

To instantiate Lyubima’s particle class, a complex index of refraction is required by the

constructor. The value of 1.85 -0.25i, which is an average complex index of refraction for

anthracite, bituminous and subbituminous coal types was used adams1993computational.

Lyubima’s particle model returns scattering and absorption efficiencies multiplied by πr2

as a function of temperature and particle size. So it returns the absorption and scattering

coefficients divided by the particle number density, and thus has units of m2/particle. Let

us distinguish these returned values as ”almost-coefficients.”

Given a temperature and the average particle size within a cell, Lyubima’s particle model

is queried to obtain the almost-absorption coefficients. This value is then be multiplied by

the particle number density of the cell, to obtain the particle absorption coefficient.

Notice that the only consideration regarding the composition of the coal particle takes

place via the complex index of refraction. Currently, objects of Lyubima’s class are being

instantiated with a single value for the refractive index of unburned coal. Ideally, a value

that represents an index of refraction for a mixture of coal and ash should be used. Brad

Adams’ work shows that for a particle comprised of ash and coal, the absorption efficien-

cies can be interpolated linearly, e.g. efficiency interp = efficiency ash + mass frac coal *

(efficiency coal - efficiency ash) [100].

To avoid instantiating Lyubima’s class at each radiation solve, yet resolve the varying

complex index of refraction, a proposed approach is to generate two tables for all the

almost-coefficients: one generated with the complex index of refraction of pure coal, and

one with the complex index of refraction of pure ash. For ash, the gray average given by

Modest of 1.5-0.02i [87], or the gray value calculated below using Goodwin’s data, 1.505 -

77

0.1185i [101] can be used. This will allow interpolation between the two tables based on

composition.

There exists another caveat in the formulation of particle absorption coefficients. The

complex indices of refraction for coal and ash are functions of wavelength. Lyubima’s code

takes as an input a value that is accurate only at a specific wavelength, then generates

properties over a wide spectral range. In the range of radiative frequencies present in coal

combustion, the real part of the index of refraction is relatively constant, but the complex

part varies over 5 orders of magnitude [101]. This is bad news for the assumption that a

constant value of the index of refraction can be used to generate a table of efficiencies that

span a wide range of frequencies. It is proposed that Lyubima’s model be updated to accept

a vector of complex indices of refraction to be used in the properties calculations.

6.1.0.3 Digitization of Experimental Property Data

Using plot digitization software, the data from Goodwin’s flyash were estimated as

shown in Fig. (6.1) and Fig. (6.2). This data was then imported into Matlab where

trapezoidal integration was performed over the specified wavelengths. With this integration,

a grey-value approximation for the refractive index was calculated as follows

∫ λmax

λmin
n∂λ

λmax − λmin
, (6.1)

∫ λmax

λmin
k∂λ

λmax − λmin
, (6.2)

where n is the real component of the complex index of refraction, and k is the imaginary

component

If an update to Lyubima’s code is made to allow for a vector of refractive indices, the

digitized forms of the spectrally resolved refractive index data could be used as input into

the FSK property calculator to achieve higher-accuracy spectral radiative properties.

There was some confusion pertaining to the units of the absorption coefficients generated

by Lyubima’s property models. Parts of the documentation give units of m−1 and others

give units of cm−1. For this reason, the verification and validation studies in this research

were completed using the Hottel properties, though RMCRT is capable of running with

either property method.

After the completion of this research, the confusion regarding units was ameliorated,

and it appears that Lyubima’s models are ready for production coupling with RMCRT.

78

Figure 6.1. Digitized data of the real component of the refractive index of ash with 5.47
percent hematite.

Figure 6.2. Digitized data of the imaginary component of the refractive index of ash with
5.47 percent hematite.

79

6.2 Hottel Properties

The Hottel-Sarofim property model was linked to the RMCRT code via the RadProp-

ertyCalculator.cc file. The interface requires the passing of CO2, H2O, and soot volume

fractions as a vector, and subsequently passes these values to a Fortran subroutine that

computes the absorption coefficients. To ensure that the interface was written properly,

verification testing was performed. The methane fire NEW.ups input file was selected for

use in comparing absorption coefficient values produced from the RMCRT interface and

those produced by the legacy interface to the Hottel properties via the Discrete Ordinates

Method. At timestep 1, as expected, the absorption coefficients (abskg) from both cases

was identical. At timestep 10, the two differed on average (L1 norm) by 2.0e-6, and at

timestep 100 the L1 norm was 0.0012 (See figures 6.3 6.4 6.5 6.6).

As expected, each method produced slightly different divQ values, leading to different

domain temperatures. The difference in the absorption coefficient values at subsequent

timesteps are expected as a result of the table lookup at these differing temperatures.

80

0 100 200 300 400 500 600 700 800 900 1000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

i + i*j + i*j*k

ab
sk

g
(1

/m
)

timestep 1

RMCRT
DOM

Figure 6.3. Hottel-Sarofim absorption coefficients produced through the RMCRT inter-
face(blue) and DOM interface (green) at timestep 1.

81

0 100 200 300 400 500 600 700 800 900 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

i + i*j + i*j*k

ab
sk

g
(1

/m
)

timestep 10

RMCRT
DOM

Figure 6.4. Hottel-Sarofim absorption coefficients produced through the RMCRT inter-
face(blue) and DOM interface (green) at timestep 10.

82

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

i + i*j + i*j*k

ab
sk

g
(1

/m
)

timestep 100

RMCRT
DOM

Figure 6.5. Hottel-Sarofim absorption coefficients produced through the RMCRT interface
and DOM interface at timestep 100.

83

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

i + i*j + i*j*k

ab
sk

g
(1

/m
)

timestep 100 clipped

RMCRT
DOM

Figure 6.6. Hottel-Sarofim absorption coefficients produced through the RMCRT interface
and DOM interface at timestep 100, with values clipped at 0.5 to allowing viewing of the
smaller values.

CHAPTER 7

PARALLEL CONSIDERATIONS

85

7.1 Turbulent Radiation Interactions

Coupling parallel simulations of combustion and radiation poses several numerical chal-

lenges. The fluid mechanics of combustion are local phenomena, making them amenable to

domain decomposition. Conversely, radiation is a long-distance, and potentially all-to-all

phenomenon, creating difficulties for domain decomposition. Further, accurate calcula-

tion of radiative transfer requires spatially resolved information regarding the temperature

and species composition fields. Traditional modeling of turbulent systems has included

Reynolds-averaged Navier Stokes (RANS) simulations. The RANS model provides, at a

relatively low computational cost, spatially averaged values of the gas temperature and

species fields. However, for highly non-linear physics such as radiation, spatial averaging in

this manner may introduce large errors [9]. Alternatively, direct numerical simulation (DNS)

fully resolves the power spectrum of eddies, giving access to the full spatial distribution

of the pertinent fields. Wu et al. [10] and Deshmukh [11] have coupled a monte-carlo ray

tracing method to solve the radiative transfer equation in a turbulent reacting flow modeled

by DNS. Unfortunately, due to its high computational demand, DNS remains impractical

for use in large-scale combustion simulations. In contrast, large eddy simulations (LES)

resolve the largest fluid motions, down to the Nyquist limit for a given turbulent field and

mesh resolution. Beyond this limit, the less-important smaller eddies are approximated via

simpler models. Because combustion turbulence is generally dominated by large eddies [12],

LES gives a better description of the fluid mechanics than RANS, and does so without the

computational cost of DNS.

The various levels of accuracy in which thermal radiation has been modeled in com-

bustion simulations has been reviewed by Snegirev [13] and Sacadura [14]. The radiation

models cited include the optically-thin approximation [15], the discrete ordinates method

[16, 17] the discrete transfer method [18], and the finite volume method [19]. The optically

thin model neglects the participation of media (absorption, emission, and scattering), and

has been shown to introduce error even in small flames [20]. The remaining methods model

radiative emission as energy emanating along a set of pre-defined directions. Such angular

discretization suffers from the ray effect [21]. Conversely, monte-carlo techniques that select

randomly-distributed rays at each time step have low sensitivity to angular discretization

and are applicable regardless of media optical thickness [13]. In his earlier work, Snegirev

presented a RANS model of buoyant turbulant diffusion flames coupled with statistical

modeling of thermal radiation transfer. Although Snegirev’s earlier model used a robust

formulation of thermal radiation via the monte-carlo method, his turbulence model suffered

86

from the lack of resolution of the sharply varying fluctuations of temperature and species

concentrations that are lost in RANS approximations. More recently, Snegirev coupled

monte-carlo radiation with large eddy simulations [22, 23]. These simulations operated on

modest meshes of approximately 498,000 control volumes. Other examples of coupled LES

monte-carlo radiation models are rare, but include the work of Zhang et al., in which a larger

mesh of 4.7 million cells were used [24]. In this emerging field remain several unresolved

issues. One such issue is how to deal with increasing mesh sizes that are run on increasingly

parallelized super computers.

Modern super high-performance computing systems are comprised of hundreds of thou-

sands of computing cores, and are used to run simulations with meshes comprised of billions

of computational cells [25, 26, 27]. Strong scaling in massively-parallel computing is difficult

to obtain due to load imbalancing and inter-processor communication demands. The strong

scalability limit of a code is reached when an increase in the number of parallel processors

used on a fixed problem size does not result in a decrease in computational wall time [28].

Numerous examples of parallelized monte-carlo radiation models were investigated, most of

which cease to scale beyond 100 processors [9, 24, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,

40, 41, 42, 43]. An example of a coupled combustion and monte-carlo radiation model that

has a scalability limit above 200 processors was not found in the literature.

In this work, a new numerical technique has been developed to perform large eddy

simulations of large-scale combustion flows coupled with a three-dimensional reciprocal

monte-carlo ray tracing radiation model. This model has been optimized for use on high-

performance computing systems and achieves nearly-ideal strong scaling to over 16,000

processors.

As mentioned above, fluid mechanics and most other phenomena in combustion physics

are localized phenomena and amenable on domain-decomposed meshes. In this work, to

represent the long-range effects of radiation, the computational domain is recomposed at the

time of each radiation solve. This is accomplished over a message passage interface, through

which each processor shares the temperature and radiative-properties fields (absorption

coefficients, scattering coefficients, temperatures, and cell types) with all other processors.

This reconstructed domain combined with the mutually exclusive nature of reciprocal

monte-carlo rays is amenable to massive parallelism. Radiative properties are calculated

via the Hottel and Sarofim method. For efficiency, these calculations are pre-computed and

tabulated in narrow increments of temperature and species mixture fraction values.

87

7.2 Parallelism and Load Balancing

Ideal parallel speedup occurs when the time spent passing information between proces-

sors is negligible compared to the work done by each processor, when all portions of the

algorithm are parallelizable based on Amdahl’s law (see appendix) and if no computers sit

idle while others complete their tasks. The first constraint is met by efficient code writing

that ensures that all or most of the information a given processor needs to complete its

computations is available to that processor.

The middle constraint is a function of the model. The RMCRT model has a minimal

non-parallelizable portion comprised primarily of initialization routines. The bulk of the

algorithm is ray tracing, which as explained in Section 7.1, is parallelizable due to the

mutual exclusivity of the rays.

The final constraint is met via proper load balancing that distributes the work load

equally between processors. Load balancing may be accomplished in two general ways–

dynamic load balancing, and static load balancing. Static load balancing schemes distribute

the load only once, at the onset of computation. However, because the computation times

of different regions of a domain are problem and time-dependent and rarely uniform, static

load balancing often creates idle time amid processors. Dynamic load balancing begins with

an initial load distribution which can then be modified if and when computers complete

their original tasks. Heirich and Arvo have noted that when total computational time

is of importance, static load balancing is insufficient for parallel ray tracing on massive

high-performance computing systems. [76].

The Uintah Framework incorporates dynamic load balancing via a scheduler and data

warehouse [64]. The scheduler container that stores simulation variables is the data ware-

house. The data warehouse stores simulation variables and serves as a dictionary wherein

variable names and patch IDs are mapped to memory addresses. The load balancer gen-

erates a patch distributions, and the scheduler creates sets of tasks [102]. In this manner,

processors are assigned approximately equal loads, reducing idle processor time.

Approaches of other authors to parallelize ray tracing for radiation applications focused

on passing between processors rays that have breeched the local grid extents. Wise and

Abel of Princeton and Stanford Universities, respectively, expended considerable efforts on

their parallelization strategy of their ray casting scheme for the coupled hydryodynamics

radiation code, ENZO. Unfortunately, strong scaling analysis of this algorithm showed no

improvement of computational time for parallelism at 70 or more processing cores [29, 30].

This was perhaps due to the large amount of communication that results from the passing

88

of rays between processors. Kuiper et al. developed a similar parallel ray tracing scheme

for computing radiation transport in stellar formations, but to date, have not demonstrated

strong scaling beyond 64 processors [31]. In 2009, Gentile successfully scaled ray tracing for

radiation calculations to 128 processors. Any further increase in processors resulted in no

further decrease in computational time [43]. Numerous other authors have developed similar

parallel ray tracing strategies for radiation calculations, and have achieved scaling in the

range of 8 to 72 processors [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 9, 40, 24, 41, 42, 43]. If

there are others outside our research group who have achieved scaling beyond 128 processors

for ray tracing of radiation calculations in combustion simulations, it is not obvious in the

literature.

As part of this dissertation, a parallel-capable radiative-flux solver that scales to 1,728

CPUs has been created (see figure 7.2). Such scaling is attained by avoiding the Message

Passing Interface (MPI) by stitching together a decomposed domain into a global domain

for each processor, and utilizing reverse monte-carlo rays that traverse freely throughout

the domain until extinction.

Todd Harman and Alan Humphry of the University have translated the RMCRT code

described in this thesis into the CUDA language, allowing RMCRT to run on the Graphics

Processing Unit (GPU) nodes of the supercomputer, Titan. The shared memory of the

GPUs and breakdown of each GPU into hundreds of cores allowed for the simultaneous

tracing of hundreds of rays per GPU [64]. The CUDA version of RMCRT attained ideal

strong scaling to 16,000 processing cores (see figure 7.1).

89

128 256 512 1024 2048 4096 8192 16384
101

102

103

104

Processing Cores

W
al

l t
im

e
(s

)

RMCRT
ideal

Figure 7.1. Strong scaling of the reciprocal monte carlo radiation model performed on the
Titan GPU cluster.

0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

lo
g

of
 ti

m
e

(s
)

log of processors

Model
ideal

1728

Figure 7.2. Strong scaling analysis of RMCRT on 8 to 1728 processors using 100 rays per
cell on a domain of 1503. on the Titan GPU cluster.

90

7.3 Adaptive Focus Mesh Refinement

Memory constraints begin to restrict the size of the domain at approximately 3003 cells.

A potential solution to this problem involves a composite mesh that allows each processor to

be handed a fully resolved version of a subset of the domain and a coarsened version of the

remainder of the domain. This approach has been coined Adaptive Focus Mesh Refinement,

or the Data Onion (see figure7.3).

The adaptive-focus mesh addresses the issue of global storage of radiation field values,

thus avoiding the passing of rays between processors. Use of the message passing interface

(MPI) is minimal, and is limited to the patch re-composition operation. Arches and other

Uintah components perform parallelism via patch domain decomposition. In this paradigm,

an intact version of the entire domain simply does not exist. Portions of the domain are

stored amid the various processors, so to create a composite mesh each processor gathers

the patches from all other processors. The more time that is spent on passing information

between processors, the less efficiently the algorithm will scale. To mitigate the amount of

data that is handled on the MPI, I propose aggressive coarsening on regions of the domain

that are distal to the focus region. Justification for this is two-fold. First, the physical

distance between the distal and focus regions increases the optical thickness. Therefore,

any contribution from the distal regions will be attenuated exponentially along that path

length, thus decreasing the effect of the distal region on the origin cells. Second, the distal

regions subtend a smaller solid angle than do proximal regions, again limiting the impact

on the focus cells.

At present, the Data Onion approach is producing unfavorable accuracy results. Perhaps

due to a bug in the code, accuracy when using the data onion is poor (see figure 7.4). Further

investigation may reveal a flaw in the programming or perhaps the method itself.

91

Figure 7.3. Fine CFD mesh on which the fluid/particle equations are solved (left). Single
level, asynchronous mesh at a coarser level for the radiation physics (center). Multi-level,
adaptive-focus mesh, a.k.a Data Onion (right).

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

location (m)

di
vQ

 (W
/m

3)

rmcrt data onion
BurnsChriston

Figure 7.4. RMCRT with Adaptive Focus Mesh Refinement compared with the Burns
and Christon numerical solution.

CHAPTER 8

VIRTUAL RADIOMETER MODEL

93

8.1 Virtual Radiometer Model

There exists a general need to compare radiative fluxes from experimental radiometers

with fluxes computed in Thermal/Fluid simulations. Unfortunately, typical numerical

simulation suites lack the ability to predict fluxes to objects with small view angles thus

preventing validation of simulation results. A new model has been developed that allows

users to specify arbitrary view angles, orientations, and locations of multiple radiometers,

and receive as the output, high-accuracy radiative fluxes to these radiometers. This virtual

radiometer model incorporates a reverse monte-carlo ray tracing algorithm adapted to meet

these user specifications and runs on both unstructured and structured meshes. Verification

testing of the model demonstrated the expected order of convergence. Validation testing

showed good agreement between calculated fluxes from the model and measured fluxes from

radiometers used in propellant fires.

NOMENCLATURE

E = Exact Solution

R = Uniformly distributed random number

qeff = Effective emissive power

L = Length of one side of a cube

ε = Statistical error

σ2 = Statistical variance

C = Computed Solution

F = View factor

Ω = Solid Angle

Q3 = 3rd Quadrant of a 2D Cartesian Grid

Q4 = 4th Quadrant of a 2D Cartesian Grid

A = Rotation matrix

~b = x,y,z coordinates rotated into the appropriate orientation

~x = x,y,z coordinates prior to rotation into the appropriate orientation

θ = Radiometer rotation angle about the y axis

φ = Radiometer rotation angle about the x axis

ξ = Radiometer rotation angle about the z axis

θv = Radiometer View Angle

θr = Ray polar angle

φr = Ray azimuthal angle

ir = Ray index number

94

l = A point along a ray

T = Temperature

N = Number of rays traced per radiometer

q = Radiative flux

Iin = Incoming intensity

κ = Absorption coefficient

Iout = Outgoing Intensity

n = Radiometer normal vector

Subscripts

i = Incident

cv = Control Volume

b = Black body

o = Outgoing

w = Wall

n = Net

8.2 Introduction

The ability to validate data from experiments with that of simulations, and vice versa is

useful in quantifying uncertainty and in improving measurement and numerical techniques.

Unfortunately, due to the lack of a viable virtual radiometer model, the fire science commu-

nity has had difficulty reconciling the data from the instruments that measure radiative flux

and the output of models used in fire simulations [103]. The narrow view angles inherent

to many experimental radiometers, as well as the variability of location and orientation

of these radiometers make them particularly difficult to model. This article elucidates

the necessary steps to create a numerical model to represent the physics associated with

radiative fluxes to surfaces with arbitrary view angles and orientations, and describes the

benefits of using a modified reverse monte-carlo ray tracing scheme. The paper begins with

a discussion of the difficulties in modelling an experimental radiometer. A brief analysis of

the governing equations for radiation in participating media is then given. We then delve

into the additional calculations necessary to accommodate for features such as ray marching

in unstructured meshes, and how to generate equi-distributed random numbers on arbitrary

solid angles. Results of the model’s ability to closely match known solutions of benchmark

cases and measured values from experiments are given.

95

8.3 Difficulty of modelling radiometers within a
computational framework

Radiometers used by experimentalists come in a wide variety of configurations. To

accommodate for this variability, a virtual radiometer model must allow the user to specify

the configuration. The primary parameters include the radiometer view angle, location,

and orientation. See Fig. (8.1) for a simple schematic of a radiometer.

Traditional radiation models, such as the Discrete Ordinates Method, discretize the

spatial domain without regard to the view angle, orientation, or location of a radiometer

[17]. This can lead to drastic inaccuracies when predicting fluxes to radiometers, which tend

to have small cross sections [103]. This problem, known as the ray effect, is exacerbated for

radiometers with small view angles. For example, the radiometer represented by the cone

at location (a) in Fig. (8.2) is located between two rays, and therefore would register an

under-predicted flux. Conversely, the radiometer at location (b) should reject the incoming

ray that is outside its view angle. However, most radiation models cannot account for this,

and as a result, would over-predict the incident flux. An example of the ray effect from a

fire simulation is demonstrated in Fig. (8.3). In the flame front of this image, the fuzzy

light streaks are not a feature of the fire, but rather an artifact of the ray effect.

To overcome the ray effect and create a model that properly restricts incoming intensities

to those within the bounds of a radiometer’s view angle, we created a modified reverse

monte-carlo ray tracing scheme. The details, including the appropriate governing equations

and considerations for arbitrary view angles and orientations, are given in the following

sections.

8.4 Governing equations of radiation in participating media

The governing equation for reverse monte-carlo ray tracing in nonhomogeneous, partic-

ipating media was first developed by Walters and Buckius [91]. Specifically,

Ii,k =

lk∫
0

Ib,cvκ(l′)exp[−
lk∫
l′

κ(l′′)dl′′]dl′ + Io,sur(Tw)exp[−
∫ lk

lw

κ(l′)dl′], (8.1)

where Ii,k represents the incident intensity at location k, κ represents the absorption

coefficient, and l represents the locations of the segment lengths along a ray.

In a discretized domain, we assume piecewise homogeneity and pose Eqn. (8.1) in the

following form,

96

δθsensor

shield

n

Figure 8.1. simple schematic indicating δθ. the view angle of the radiometer is 2δθ.

a b

Figure 8.2. With current radiation solvers,the radiometer at location “a” would register an
under-predicted flux whereas the radiometer at location “b” would over-predict the incident
flux.

Ii,k =
M∑
m=1

(
Ib,v(e

−
∫ lk
lm2 κ(l′)dl′ − e−

∫ lk
lm1 κ(l′)dl′)

)
+ Io,s(Tw)e−

∫ lk
lw
κ(l′)dl′ , (8.2)

where M represents the full path length of a ray comprised of a series of smaller segments

denoted by m. The intensities from each of the rays of a radiometer are then weighted

according to the solid angle that each ray subtends [45]. Assuming uniform distribution of

the rays, each ray will subtend Ω
N steridians, where Ω is the solid angle of the radiometer

97

Figure 8.3. The ray effect is visible in this cutaway that shows the spatially varying
radiative flux of a simulation of a propellant fire.

and N is the number of rays used in the simulation. The radiative flux is then calculated

from the intensities of the rays, weighted by the discretized solid angle,

qi =
Ω

N

N∑
r=1

Ii(ir)cos(θ(ir)), (8.3)

where Ii(ir) and θ(ir) represent for a particular ray, the incoming intensity and angle from

the radiometer normal, respectively.

Some of the radiometers used in experimental measurements are calibrated against a

black body that subtends the entire field of view of the radiometer. These radiometers

therefore report a value that is an effective emissive power,

qeff =
qi

(1− cos(θv/2))cos(θ/2)
. (8.4)

To accommodate, the output of the model computes both qi and qeff .

Note: Experimental radiometers measure a net flux, qn = qi − qo. Traditionally in

radiation texts, qn = qo − qi. In the fire sciences, however, because qo << qi it is generally

accepted to report a positive flux to a radiometer, neglecting qo. Justification for this is

increased when the radiometers are liquid cooled, decreasing qo as is the case with the

experimental radiometers mentioned in the Validation section.

98

8.5 User-specified view angle and orientation

Perhaps the most novel feature of this algorithm is the capability to handle, at run-time,

a user-specified orientation and view angle for the radiometer. The implementation of these

two features is described in the following two sub-sections.

8.5.1 User-specified view angle

The view angle will define a solid angle about which rays must be generated and

uniformly distributed. To accomplish this, two random numbers must be generated to

span this two dimensional surface. The naive approach would be to generate two random

numbers between 0 and 1, and simply scale them by a factor of 2π for the azimuthal angle

φ, and a factor of θv for the polar angle, where θv = V/2, where V is the view angle

of the radiometer. Unfortunately, this will lead to non-uniformly distributed rays. To

demonstrate, consider a solid angle of 4π sr., a sphere. If one were to attempt to generate

a series of rays according to the naive approach, the azimuthal and polar angles of the rays

would be described as follows,

φr = 2πR1 (8.5)

θr = πR2, (8.6)

where R1 and R2 are two independent random numbers uniformly distributed between

0 and 1. This approach would lead to the distribution shown in (a) of Fig. (8.4) [104].

The clustering around the poles is a result of the surface area of spherical objects not

being proportional to δθ. To account for this, we must be able to produce a random number

within the range of cos(π) to cos(0) (evaluated as -1 to 1), then take the arccosine of that

number. Figure (8.5) demonstrates why this is necessary.

Notice in Fig. (8.5) that the range of random numbers that produces a value of θ

between 0 and π/4 is 0.707 to 1. This range of possible random numbers is less than half

the size of that which produces a value of θ between π/2 and π/4, specifically 0 to 0.707.

This is consistent with the fact that the surface area on a sphere between θ = π/4 to π/2 is

more than double that of of the surface on a sphere between θ = 0 to π/4. Scaling a random

number in this manner correctly causes the probability of picking a point within a given δθ

to be proportional to the area that δθ subtends in the unit sphere. This is consistent with

the equation for an infinitesimal solid angle given by

99

a b

Figure 8.4. Random numbers that vary uniformly with the polar angle produce incorrectly
distributed points clustered near the poles as shown in (a). Random numbers appropriately
weighted by the polar angle produce points that are correctly distributed (b).

100

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

/4

/2

3 /4

R

a
co
s(
R
)

Figure 8.5. Distributing random points on a sphere requires the scaling by arccosine of
the random number R, where R = 2R2 − 1, such that R has a range of -1 to 1.

dΩ = sin(θ)dφdθ = −dφ(cos(θ)). (8.7)

With this correct implementation of picking random points on a sphere, the azimuthal

and polar angles are assigned as,

φr = 2πR1 (8.8)

θr = acos(2R2 − 1), (8.9)

where (2R2 − 1) yields a random number uniformly distributed between -1 and 1.

Similarly, to generate random points on a hemisphere, the polar angle for a given ray

would be assigned as acos(R2) where R2 has a range of 0 to 1 and corresponds to polar

angles between 0 and π/2. Then, to generate points on an arbitrary solid angle that the

user-specified view angle subtends, one needs to ensure that the random numbers have a

range of cos(−θr) to cos(θr). This is accomplished by setting the range equal to

range = 1− cos(θv). (8.10)

Then, to generate rays within the user-defined solid angle, the azimuthal and polar

angles for a given ray are assigned as

101

φr = 2πR1 (8.11)

θr = acos (cos(θv) + range ∗R2) . (8.12)

These generated points, with the location of the radiometer as their origin, define the

direction vectors of the rays which are then traced through the domain.

8.5.2 User-specified orientation

From a developer’s standpoint, it would be most convenient if the orientation of ra-

diometers used in experiments were always aligned in the same direction. This, however, is

not the case. To handle the variability in the radiometer orientation, the virtual radiometer

model must be able to take as an input, any user-defined direction normal vector, and adjust

the orientation of the rays accordingly. To accomplish this, a matrix that transforms any

Cartesian point about a vector comprised of rotation angles is employed. This matrix, [A],

is defined as

 cosθcosξ −cosφsinξ + sinφsinθcosξ sinφsinξ + cosφsinθcosξ
cosθsinξ cosφcosξ + sinφsinθsinξ −sinφcosξ + cosφsinθsinξ
−sinθ sinφcosθ cosφcosθ

 (8.13)

where φ, θ, and ξ represent the counter-clockwise rotation angles about the x,y, and

z axes, respectively. To relieve the user of the burden of determining these three rotation

angles, the virtual radiometer model takes as an input, the normal vector of the radiometer

and computes these rotations automatically. This is accomplished as follows,

θ = acos

 nz√
n2
x + n2

y + n2
z

 (8.14)

ξ = acos

 nx√
n2
x + n2

y

 , (8.15)

where nx, ny, and nz represent the components of the vector normal of the radiometer.

Note that there will never be a need to calculate a rotation about the x axis. All possible

rotations can be accomplished using the other two, while fixing φ at 0. Due to the constraints

of arccosine, the value of ξ must be adjusted if nx and ny are in the 3rd or 4th quadrants

of the xy plane. Specifically,

102

if(nx, ny) ∈ Q3 : ξ = π/2 + ξcalculated (8.16)

if(nx,ny) ∈ Q4 : ξ = 2π − ξcalculated (8.17)

At this point, the rotation angles are applied to the direction vectors of the rays via the

matrix multiplication of

[A]~x = ~b, (8.18)

where ~x is the pre-rotated direction vector of a ray in Cartesian coordinates, and ~b is

the resulting direction vector.

8.6 Ray marching in unstructured meshes

When performing ray tracing on structured meshes, the marching algorithm (the algo-

rithm that determines which cell will be referenced and in what order) is relatively simple

due to the geometric relations that exist between the orientation of the ray and the surface

normals of the cells (see section 3.1). Optimization of this algorithm also becomes trivial

as there are only 6 possible face normal vectors, which are further reduced to three once

the signs of the components of the ray direction vector are known [93]. However, when

the mesh in use is unstructured, the geometric relationships between the ray orientation

and the surface normals of the element faces become complicated, and may vary greatly

from step to step. The tracing of rays in an unstructured mesh therefore requires the

implementation of one of several possible methods, two of which are described as follows.

The first involves walking the node connectivity by calculating intersections between the

current location of the ray and the faces of the elements. The second involves selecting points

a priori along the defined ray direction, and querying the elements to find which element

owns those coordinates. While the first method will undoubtedly result in a more efficient

algorithm, the development burden is much greater than that of the second as it requires

information regarding the elements’ neighbors, node extents, face normal vectors, etc. The

second approach, involves simple element search routines and is much less developmentally

intensive. This approach includes useful speedups such as overlaying the mesh with a coarse,

structured grid. This requires the initial search to find not the element that contains a given

set of parametric coordinates, but rather the “bucket” that contains these coordinates. Once

this bucket has been identified, only the elements within the bucket are queried, rather than

103

all the elements in the entire domain. For these reasons, the second approach was selected

to handle ray marching in unstructured meshes.

8.7 Verification and validation

We performed a series of tests to ensure that our algorithms accurately represented the

model, and that the model accurately represented reality. These test and the subsequent

results are outlined in the following subsections.

8.7.1 Verification of ray distribution

To verify that the randomly generated rays were uniformly distributed over the solid

angle of the radiometer, and that Eqn. (8.3) was implemented correctly, the model was used

to solve for the view factor between a circular disc and an infinitesimal surface as shown in

Fig. (8.6). For a disc of radius r separated from the infinitesimal area by a distance h, the

analytical solution as given by [87] for the view factor is

F =
1

(h/r)2 + 1
. (8.19)

The L2 error norm, defined as

√
(E−C)2

E , where E is the exact solution and C is the

computed solution, was shown to decrease with an increase in the number of rays such that

at 100,000 rays, the L2 error norm was approximately 0.001. Because the distribution of

the rays is of importance particularly for wide angle gauges, this L2 error norm is printed to

the log file when values of the view angle exceed atan(0.5), or approximately 51◦. The ray

error can then be used as a metric to assess the confidence in other computed values such

as the radiative-heat flux. This verification test does not exercise the participating media

portion of the algorithm, so the 3D case described by Burns and Christon [1] was employed

to verify these features as explained in the following section.

8.7.2 Verification of participating media physics

Exact solutions to radiation problems involving non-homogeneous, non-isothermal, emit-

ting, absorbing media are difficult to come by [41, 46]. The integro-differential Radiative

Transport Equation becomes prohibitively complex for these situations, limiting the avail-

ability of analytical solutions. There are, however, a handful of well documented semi-exact

solutions for participating-media radiation problems. One such solution was given by Burns

and Christon in 1997 [1]. This case is described by a three dimensional cube with cold

black walls, with an absorption coefficient, κ, that varies according to following the trilinear

function,

104

Figure 8.6. Schematic representation of the view factor of a circular disk as viewed by a
point at the bottom of a cylinder.

105

κL = 0.9
(

1− 2 | x
L
|
)(

1− 2 | y
L
|
)(

1− 2 | z
L
|
)

+ 0.1 (8.20)

where L is the length of the cube, and x, y, and z are the distances from the center of the

Cartesian domain. A visualization of this absorption coefficient is given in Fig. (8.7). The

semi-exact solution was computed by Burns and Christon via the Discrete Ordinates Method

on a 403 domain. The number of ordinate directions was increased until the radiative flux

divergence, ∇ · q, converged to 10−5.

The intensities computed by the virtual radiometer model were used to compute the

radiative flux divergence at various locations in the domain for which a solution was given

by Burns and Christon. The radiative flux divergence is described in terms of intensity as

follows

∇ · q = κ

4πIb,out −
∫
Ω

IindΩ

 , (8.21)

or in discretized form as

∇ · q = κ(4πIb,out −
N∑
ir=0

(
Iin(ir)

4π

N

)
, (8.22)

where Iin is described by Eqn. (8.2) and N is the number of rays per radiometer.

Although this case solves for the flux divergence rather than a surface flux, because the

expression is a function of the incoming intensity, this case exercises the participating media

functionality of the algorithm. The resulting flux divergences at the specified locations were

in excellent agreement with the solutions of Burns and Christon and are illustrated in Fig.

(8.8). Using 10,000 rays per radiometer an L2 error norm of 0.00305 was obtained.

8.7.3 Verification of ray convergence

Convergence of the solution to the incident flux as a function of the number of rays used

in the simulation is demonstrated by Fig. (8.9). Here, the virtual radiometer model was run

on data produced by an 18” aluminum propellant fire. The resulting fluxes produced from

varying ray numbers were compared to the converged values as computed by a simulation

with 1.4 million rays. The expected rate of convergence is calculated by recognizing that

due to the statistical nature of the random rays, the variance of the solution is proportional

to the inverse of the number of rays,

106

Figure 8.7. absorption coefficient as specified in the case described by Burns and Christon
[1].

!"

!#$"

%"

%#$"

&"

&#$"

'"

'#$"

(!#)" (!#*" (!#&" !" !#&" !#*" !#)"

!"
#$
%&
'(
)*
+)
,-
)%
./

01
23
4%

&'567,-)%8*91%-),6)*%98%:917',%.14%

+,-./01"203,456.6-"

7/08,(9:0;."<41/=4>"

Figure 8.8. Results of the participating media physics verification test. The virtual
radiometer model demonstrates excellent agreement with the numerically-exact solution.

107

σ2 ∝ 1

N
. (8.23)

The error, which is proportional to the square root of the variance is therefore

ε ∝ N−
1
2 . (8.24)

Taking the log of both sides of Eqn. (8.24) and moving the exponent to the beginning

of the RHS yields

log(ε) ∝ −1

2
log(N). (8.25)

The expected slope is therefore −1
2 which is within 4% of the calculated slope of ray

convergence of -0.5173.

As a second ray convergence test, we then used the solution of Burns and Christon, rather

than our own converged solution, to compute the relative error. The flux divergences given

by the virtual radiometer model at 41 spatial locations were compared with this solution.

An L2 error norm of these points was calculated for each ray number (see Fig. (8.10)).

Note in Fig. (8.10) that as the number of rays was increased, the difference between the

two solutions didn’t converge to zero. This is perhaps due to the fact that the quasi-exact

solution has a non-zero error which will result in an offset in the convergence. In fact, it is

quite possible that at 100,000 rays, the solution produced by the virtual radiometer model

is more correct than the quasi-exact solution.

8.7.4 Validation

We performed validation testing against experimental data to compare the results of

the virtual radiometer model with physical reality. Experimental data was supplied by a

previously performed test of Sandia National Laboratories [105]. During this testing, a series

of aluminum propellant blocks was allowed to combust to completion. Each test consisted

of varying sized propellant blocks with radiometers and spectrometers placed in varying

arrangements. A simulation model was constructed to match the parameters of one of these

cases, the 18” propellant block upward burn case, and the model was analyzed using Fuego

[106]. The results of the Fuego simulation were used as input for the virtual radiometer

model which then calculated radiative fluxes at the same locations of the radiometers in

the experimental setup. The results are summarized in Fig. (8.11) which demonstrates the

agreement between experimental and simulation data.

108

!"#"$%&'()*+","%&')-."
/0"#"%&-.('1"

$2&'"

$2"

$(&'"

$("

$%&'"

%"

%&'"

(" 2" *" 3" '"

!"
#$
%&
'(
))
")
'*
")
+
,'

'
!"#$-./01,'

'

0.5

0

-0.5

-1

-1.5

-2

-2.5
1 2 3 4 5

Figure 8.9. L2 error norm as a function of ray number, using the converged solution
of 1.4M rays to compute relative error. The solution converged at the expected order of
approximately −1

2 .

!"#$%

!"#&%

!"#"%

!"%

!'#(%

!'#$%

!'#&%

)% '% "% *% &% +% $%

!"
#$
%&
'
"(
)
*+

!"#$,-./0*+

-1.4

-1.6

-1.8

-2

-2.2

-2.4

-2.6
0 1 2 3 4 5

Figure 8.10. Convergence of the virtual radiometer results relative to the quasi-exact
solution [1].

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

'#"

#!"

!" $!" %!" &!" '!" #!" (!")!" *!"

!"
#$
"%

&'
()
*+
,(
-.
/
01

23
4(

!"#$51'6'7(8'$986(-$:4(

+,-./01.23"

+10445$"

+10445!6*"

+10445!6%"

+10445!"

+10445"!""77"
!6*"

89:"

Emperical

Emiss=1

Emiss=0.8

Emiss=0.2

Emiss=0

Emiss=0 ||
0.8
DOM

0 10 20 30 40 50 60 70 80

50
45
40
35
30
25
20
15
10
5
0

Radiometer height (in)

R
ad

ia
tiv

e
Fl

ux
 (

kw
/m

^2
)

Figure 8.11. Validation results indicate good agreement between the experimental results
(black bars) and model results at varying emissivities (dots).

109

8.8 Efficiency considerations

Several efforts have been made to ensure that the virtual radiometer model runs effi-

ciently. The choice of the random number generator (RNG) is one such effort. The RNG we

selected is the Mersenne Twister algorithm, which produces high-fidelity equi-distributed

random numbers [92]. We found that this RNG produced random numbers at a rate of

O(107)/s on our 2.3 GHz processors [107].

The virtual radiometer algorithm also avoids division, and removes constants outside

of summation loops. This is demonstrated in the calculation of the flux from the incident

intensities, where if we assume uniformly distributed rays, dΩ is constant and equal to Ω
N .

Therefore

qi =
Ω

N

N∑
r=1

Ii(r)cos(θ(r)), (8.26)

which, for a case with 5 virtual radiometers of 100,000 rays each, requires 500,000 fewer

divisions and multiplications than the following mathematically-equivalent expression

qi =
N∑
r=1

Ii(r)cos(θ(r))
Ω

N
. (8.27)

8.8.1 Differences between Uintah Radiometer and Sandia Radiometer

The virtual radiometer model that has been developed for use in Uintah’s RMCRT is

very similar to that of the Sandia model, with a few exceptions. The Sandia radiometers

trace rays that have pre-defined segment lengths. Therefore, the points at which field

values are referenced are independent of the mesh. An element search algorithm is used

to determine in which element a particular segment point lies, and the field values are

interpolated linearly to this location. In Uintah RMCRT, however, because of the use of

structured meshes, the segment lengths are a function of the mesh, and the cell center values

along the ray’s path are referenced readily. It would be possible to use an interpolation

scheme in Uintah to interpolate values to more exact locations along the ray, but to date,

this has not been implemented. The other major difference is that the Sandia algorithm

allows for independently oriented radiometers, each with an independent view angle. The

Utah code handles multiple radiometers as well, but is currently limited to homogeneous

normal vectors and view angles. The Uintah virtual radiometer model does have a few

advantages over that of Sandia in that it can handle the additional physics of reflecting

walls. Perhaps the greatest computational advantage is that the Uintah model is parallel

capable, whereas the Sandia model runs only in serial.

110

For cases that do not have wall emission or reflection, such as Burns’ benchmark case,

results from the two models are very similar, as indicated in Fig. (8.12)

There is very little change in Fig. (8.12) for the 1 cm and 1mm segment length cases

because the Sandia radiometer uses linear interpolation to get the field values at the segment

points, and this benchmark uses linearly varying absorption coefficients. Therefore, each

ray segment references an analytical value, so the only difference between the two length

scales is how many points are referenced. The Uintah radiometer uses cell centered values,

so an increase in grid refinement leads to more accurate references at each point, as well as

more points to represent the rays. For these reasons, the Uintah radiometer converges as

the grid resolution is enhanced as indicated in Fig. (8.13) The increase in L1 norm from

the 2013 case to the 3013 case is a result of the randomness of the ray error, which even for

100,000 rays is still non-negligible at fine resolutions.

111

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

Location from center (m)

Fl
ux

 (w
/m

2)

Sandia
sandiaFine
UofU101
UofU201
UofU301
UofU401

Figure 8.12. Radiative-flux divergence along a center-line of Burn’s benchmark case.
Two runs were made using the Sandia virtual radiometer using a segment length of 1 cm
(Sandia) and 1mm (Sandia Fine). Four runs were made using the Arches radiometer using
grid resolutions of 1013, 2013, 3013, and 4013.

112

100 150 200 250 300 350 400 450
1.4

1.6

1.8

2

2.2

2.4

2.6
x 10−3

L1
 n

or
m

resolution in each direction

Grid convergence analysis for UofU virtual radiometer

Figure 8.13. Grid convergence analysis for U of U virtual radiometer.

CHAPTER 9

IFRF CASE STUDY

114

9.1 IFRF case study

The International Flame Research Foundation (IFRF) has shared with the Institute

for Clean and Secure Energy (ICSE), valuable data pertaining to combustion experiments

in large, gas-fired boilers. Using these data, ICSE has developed Large Eddy Simulation

models to represent IFRF experiments. One such case is a representation of a methane-fired

boiler. The boiler is a cylinder of 4.1m in length and 1m in diameter. The burner

is comprised of a primary fuel annulus and a secondary oxygen-stream annulus. The

simulation was to run to a pseudo-steady state of the fluid dynamics, which required

approximately 70,000 timesteps. Verification testing of RMCRT was then performed by

comparing radiative flux q, and radiative flux divergence ∇ · q, values as computed by

RMCRT and DOM at the pseudo-steady-state timestep. The agreement between the two

radiation methods is demonstrated in Fig. (9.1).

Figure (9.1) was obtained by setting the wall emissivities to 0.5, for both DOM and

RMCRT, while restricting RMCRT from performing any reflections. This is un-physical,

as some of the radiation that strikes the wall is reflected for walls with an emissivity of less

than one. The reflectivity, ρ, is generally calculated as

ρ(T) = 1− α(T),

which is accurate so long as the surfaces are opaque, ε′λ is independent of wavelength and

direction (gray and diffuse) and the source is gray and diffuse with source temperature

Ts, and ε′λ is independent of T , or Ts is equal to the wall temperature [87]. With these

assumptions, for the case where the emissivity is 0.5, ρ is calculated to also be 0.5. If

RMCRT is performed with this non-zero wall reflectivity, then ∇ · q is calculated as shown

in the solid line of Fig. (9.2). Note the approximately -200,000 W/m2 shift when reflections

are taken into account. This is because the radiative flux divergence is calculated as

∇ · q = κ(4πIout −
∫
Ω

IindΩ),

and therefore, an increase in Iin leads to a decrease in ∇ · q. If reflections are prohibited

in RMCRT, the incident intensity into a given cell is decreased as the reverse-ray stops

prematurely. Put another way, the radiosity of the domain walls, R defined as the sum of

the emissive power and the reflected radiative flux, would be reduced to simply the emissive

power. The decreased radiosity of the walls is simply a result of the model, not a physical

phenomenon. Interestingly, if the IFRF domain with non-zero emissive power were to be

simulated in a model that cannot perform reflections, such as the current version of DOM,

115

−0.5 0 0.5
−5

0

5

10

15
x 105

z direction distance from center of burner (m)

di
vQ

(W
/m

2)

SN8
50Rays .5Abskg NoReflect

Figure 9.1. Radiative flux divergence from RMCRT (+) and DOM (line) on a z-line
through an x-y slice in the center of the domain of an IFRF case. RMCRT used 50 rays
per cell, DOM used SN8 in this case.

116

better results can be obtained simply by assuming black walls, as is demonstrated by the

dashed line of Fig. (9.2). Specifying an emissivity of one increases the radiosity of the wall,

and shifts the solution approximately 40 W/m2 toward that of the case where reflections

are taken into account.

9.1.1 Fluxes

Figure (fig:ReflectVsNoReflect) shows the comparison between RMCRT and DOM for

the radiative flux. Because of the directionality of radiative fluxes, more rays are required

to reach a converged solution compared to that required for radiative flux divergences.

To reduce the stochastic noise of the solution, a box filter was applied to the solution to

obtain the results shown in figure (9.3).

The L1 error norms of the RMCRT solutions are reduced by approximately 50% by

using a simple, one-dimensional box filter with a width of 5. The filtered results of 100

ray-RMCRT have L1 error norms that are 40% lower than those of SN4. RMCRT with 100

rays required approximately the same amount of processor time.

9.1.2 Timing and accuracy

The RMCRT simulations with 10 rays per flow cell, and 1000 rays per boundary cell

required a total of 1033 seconds per timestep. This time includes the time to stitch together

the full computational domain by doing the all-to-all transfer over MPI, and filter the results.

This compares to 2949 seconds per timestep for SN8 (see table (9.1).

9.2 IFRF f85y4 case study

Another IFRF boiler was selected as a case study. The IFRF f85y4 oxy1B case described

in [108] was modeled in the Arches component. A copy of the the ups input file is given in

the appendix.

The configuration of the boiler is shown in figure (9.5). The geometry of the burner is

shown in figure (9.6).

A subsection of the boiler was discretized into 2003 cells and modeled with a coupled

RMCRT Arches simulation as well as a coupled DOM Arches simulation. Both cases were

run to pseudo-steady state. The simulations were run on over 1500 processors for tens

of thousands of timesteps. Unfortunately, after the simulations were competed, it was

discovered temperature boundary condition on the z+ face was not set correctly, leading

to inaccurate results. Time did not permit an additional run with the corrected boundary

condition. Although comparison with the f85y4 experimental data was futile, valuable

117

−0.5 0 0.5
−4

−2

0

2

4

6

8

10

12

14
x 105

di
vQ

(W
/m

2)

z direction distance from center of burner (m)

Figure 9.2. Radiative flux divergence for several RMCRT cases and a DOM SN8 case
(hollow circle) on a z-line through an x-y slice in the center of the domain of an IFRF case.
The three RMCRT cases are respectively, 1 ray per cell with reflections and an emissivity
of 0.5 (line) 10 rays per cell with an emissivity of 0.5 without reflections (dot) and 10 rays
with black walls (dash).

−0.5 0 0.5
0.8

1

1.2

1.4

1.6

1.8
x 105

z direction distance from center of boiler (m)

di
vQ

(W
/m

2)

 100 rays
1k rays
10k rays
100k rays
SN4
SN8

Figure 9.3. Radiative flux as calculated by RMCRT (lines) vs. DOM (+) for varying
positions along the z direction of a center-line through the boiler.

118

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
x 105

z direction distance from center of boiler (m)

di
vQ

(W
/m

2)

100 rays
1k rays
10k rays
100k rays
SN4
SN8
exact

Figure 9.4. Filtered solution of the radiative flux as calculated by RMCRT(lines) vs.
DOM(+) for varying positions along the z direction of a center-line through the boiler.

Computational Time (s) divQ L1 error norm q L1 error norm

Filtered RMCRT 1033 1.07 0.0311

DOM SN8 2949 2.05 0.0271

Table 9.1. Timing and accuracy of RMCRT and DOM SN8

Figure 9.5. Boiler configuration of the IFRF f85y4 oxyflam 1 case.

119

Figure 9.6. Burner geometry of the IFRF f85y4 oxyflam 1B case.

120

information was still gleaned from these simulations. Perhaps of most importance is that

RMCRT demonstrated robustness in handling the coupling with the property models as

well as stability to many thousands of timesteps.

9.3 Filtering

Due to the stochastic nature of RMCRT, there is an inherent noisiness to the q and

divQ results. This noise can be reduced by increasing the number of rays per cell, but

this comes at a linear cost with a 1/2 order benefit. This research indicates that a simple

filtering operation can reduce the noise by approximately 50% with negligible cost.

In addition to increasing the accuracy of results, filtering has also been shown to be

important for efficiency in the pressure-solve portions of combustion simulations. When

divQ results include sharp gradients, the temperature and pressure gradients of subsequent

timesteps become steep, leading to stiff equations that require more computation time. For

these reasons, filtering of RMCRT results is highly recommended. For this research, filter

operations were performed post-process. A method that performs box-filter operations in

real time has been developed and is ready for further testing.

CHAPTER 10

SUMMARY AND CONCLUSIONS

122

A high-accuracy, massively parallel reciprocal monte-carlo ray tracing radiation model

was developed and bi-directionally coupled with a turbulent, reacting-flow model in the

Uintah framework.

This model computes the radiative-flux divergence for interior cells, and the net radiative

flux for boundary cells of a computational domain. To accurately represent reality, the

model incorporates the following physics

• Non-homogeneous, absorbing, emitting media

• Homogeneous, isotropic, scattering media

• Black or gray wall absorption and emission

• Specular wall reflections for arbitrary reflectivities

• Complex domains which may include intrusion features

• Fluxes with arbitrarily sized view angles, orientations, and locations

Verification testing of the new radiation model was performed against a series of an-

alytical and numerical solutions. Validation testing was performed against data from an

aluminium propellant fire experiment performed by Sandia National Labs. Verification and

validation testing results were favorable.

The monte-carlo radiation model that was written for use on CPU-based computers was

translated into a GPU-specific language. Strong scaling analyses were performed on the

Ember cluster and the Titan cluster for the CPU-radiation model and GPU-radiation model,

respectively. The model demonstrated strong scaling to over 1,700 and 16,000 processing

cores on Ember and Titan, respectively.

The developed RMCRT model is also quite versatile. Unlike the discrete ordinates

method, RMCRT allows separation of the flux solutions from the divQ solutions. For

example, if high-accuracy fluxes are needed in only a handful of locations, or a series of

locations that lie in a single plain, the user can run with relatively few rays to produce

basic radiative effects in the flame, then run with extremely fine angular discretization at

the locations of interest. The model handles Cartesian, cubic or non-cubic cells in cubic or

non-cubic domains with or without intrusion. RMCRT was validated against experimental

data and indicated good agreement (see section 8.1).

RMCRT is amenable to coupling with non-gray properties such as the FSK model, which

is currently being incorporated into the Arches and Wasatch components.

APPENDIX A

AMDAHL’S LAW
Algorithm execution time can be decomposed into two portions, the time required

to perform the non-parallelizeable portion, x and a the time required to perform the

parallelizeable portion, y. Therefore the speedup can be written mathematically as

speedup =
x+ y

x+ y/Np
.

This expression is known as Amdahl’s Law [28]. In ideal cases, where all portions of an

algorithm are parallelizeable, x becomes zero and the speedup for any number of processors

becomes Np. However, for realistic algorithms, as the number of processors becomes large,

y/Np becomes negligible and the speedup approaches the limit of (x+ y)/x.

APPENDIX B

BENCHMARK CASES

Each of the benchmark cases has gradients in the solution of ∇· q and all but one of the

cases has spatial gradients in at least one field property. The four benchmark cases are as

follows:

Benchmark 1: Burns and Christon. This case is described by Burns and Christon

(Burns 1997). The case describes a three dimensional cube 1m in length, with a constant

temperature and a tri-linearly varying absorption coefficient. At the center of the domain,

the absorption coefficient is 1m−1

Benchmark2: Michael Modest black parallel plates. This case is described

by Modest in section 13 of his Radiation Heat Transfer book (Modest 2003). A gray,

non-scattering medium with refractive index n=1 is contained between two infinitely par-

allel, gray plates. The medium is isothermal at temperature Tm, with constant absorption

coefficient, κ. The two plates are both isothermal at temperature Tw, have the same

gray-diffuse emissivity ε, and are spaced a distance L apart. For this problem, a known

analytical solution exists for the radiative heat flux as well as the radiative flux divergence.

The analytical solution for the flux divergence is as follows

dq

dτ
= σ(T 4

w − T 4
m) ∗ −2[E2(τ) + E2(τL − τ)]

1 + (1/ε− 1)[1− 2E3(τL)]
,

where E2 and E3 are exponential functions, defined as follows

En(τ) =

1∫
0

µn−2e−τ/µdµ,

and µ is defined as cos(θ).

See Modest figure 13.2 for the general behavior of the exponential functions. This case

was used with the following values: ε = 1, τL = 1, Tw = 1000K, Tm = 1500K, and L = 1m.

To model the infinite parallel plates, the four side walls were specified with emissivities of 0,

125

such that they had no emissive contribution, and they allowed the rays to reflect specularly.

The two remaining walls had an emissivity of 1.

We found that this case required a greater number of rays to achieve comparable accuracy

to the Burns and Christon benchmark. This is due to the fact that a ray striking a reflective

wall gives a drastically different result than a ray striking the black plate. Therefore the

angular discritization, which is a function of ray number, plays a more important role.

Benchmark 3: Modified Burns and Christon. This case is has the same properties

of the Burns and Christon case with one modification–rather than a constant temperature

throughout the domain, the temperature was set as follows

T = 1000abskg

where abskg is the absorption coefficient.

Benchmark 4: Modified Modest. This case is similar to the Michael Modest case,

but with the following two changes.

abskg(z) = (
z

L
)2,

T = 1000 + 1000abskg,

where z is the vertical coordinate, and L is the length of the domain. Therefore the

absorption coefficient changes from 0 to 1 quadratically, and temperature varies from 1000K

to 2000K quadratically.

With sufficient ray numbers, however, very good agreement between the numerical and

analytical solutions is achievable.

APPENDIX C

NOTE TO THE USER

C.1 Source Weight

In cases other than benchmarks, the source weight should be set to -1. This is due to a

difference in definitions between DOM and RMCRT. RMCRT defines divQ as 4π(Iout−G),

as indicated in [?], whereas DOM defines divQ as the negative of this. To allow for the

models to be used interchangeably, the divQ source weight in RMCRT should be set to -1.

Random Rays

In cases other than benchmarks, the seed in the RMCRT block should be set as random.

This allows RMCRT to run as quickly as possible. Non-random seeds are used in benchmark

cases where repeatable results are necessary.

APPENDIX D

IFRF F85Y4 OXYFLAM1B UPS INPUT

FILE

The following input file was used to run the f85y4 oxyflame 1-B simulation.

128

<?xml version="1.0" encoding="UTF-8"?>
<!-- @version: -->
<Uintah_specification>
 <Meta>
 <title>RMCRT. Near-burner region of the IFRF f85y4 water-cooled furnace with medium-
momentum (type B) burner</title>
 </Meta>
 <SimulationComponent type="arches"/>
 <Solver type="hypre"/>
 <Time>
 <maxTime>1.0</maxTime>
 <initTime>0.0</initTime>
 <delt_min>0.0000001</delt_min>
 <delt_max>0.01</delt_max>
 <timestep_multiplier>0.2</timestep_multiplier>
 </Time>
 <DataArchiver>
 <filebase>Neg1Outletz.uda</filebase>
 <outputTimestepInterval>100</outputTimestepInterval>
 <save label="cellType"/>
 <save label="totalKineticEnergy"/>
 <save label="pressurePS"/>
 <save label="CCVelocity"/>
 <save label="viscosityCTS"/>
 <save label="div_q"/>
 <save label="scalar_var"/>
 <save label="mixture_fraction"/>
 <save label="mixture_fraction_2"/>
 <save label="heat_loss"/>
 <save label="density"/>
 <save label="temperature" table_lookup="true"/>
 <save label="C*H4" table_lookup="true"/>
 <save label="CO2" table_lookup="true"/>
 <save label="velocityDivergence"/>
 <save label="continuityResidual"/>
 <save label="abskg"/>
 <save label="soot"/>
 <save label="boundFlux"/>
 <save label="VRFlux"/>
 <checkpoint cycle="2" timestepInterval="500"/>
 <compression>gzip</compression>
 </DataArchiver>
 <Grid>
 <Level>
 <Box label="1">
 <lower>[-0.15,-0.15,0.0]</lower>
 <upper>[0.15, 0.15,0.3]</upper>
 <resolution>[200,200,200]</resolution>
 <extraCells>[1,1,1]</extraCells>

129

 <patches>[12,12,12]</patches>
 </Box>
 <periodic>[0, 0, 0]</periodic>
 </Level>
 <BoundaryConditions>
 <Face side="x-">
 <BCType id="0" label="x- pressure" var="OutletBC">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Neumann" label="mixture_fraction">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Neumann" label="mixture_fraction_2">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Neumann" label="heat_loss">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Neumann" label="enthalpy">
 <value>0.0</value>
 </BCType>
 <!-- for RMCRT-->
 <BCType id="all" label="temperature" var="Neumann">
 <value> 0</value>
 </BCType>
 <BCType id="all" label="abskg" var="Dirichlet">
 <value> 1</value>
 </BCType>
 </Face>
 <Face side="x+">
 <BCType id="0" label="x+ pressure" var="OutletBC">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Neumann" label="mixture_fraction">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Neumann" label="mixture_fraction_2">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Neumann" label="heat_loss">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Neumann" label="enthalpy">
 <value>0.0</value>
 </BCType>
 <!-- for RMCRT-->
 <BCType id="all" label="temperature" var="Neumann">
 <value> 0</value>
 </BCType>

130

 <BCType id="all" label="abskg" var="Dirichlet">
 <value> 1</value>
 </BCType>
 </Face>
 <Face side="y-">
 <BCType id="0" label="y- pressure" var="OutletBC">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Neumann" label="mixture_fraction">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Neumann" label="mixture_fraction_2">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Neumann" label="heat_loss">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Neumann" label="enthalpy">
 <value>0.0</value>
 </BCType>
 <!-- for RMCRT-->
 <BCType id="all" label="temperature" var="Neumann">
 <value> 0</value>
 </BCType>
 <BCType id="all" label="abskg" var="Dirichlet">
 <value> 1</value>
 </BCType>
 </Face>
 <Face side="y+">
 <BCType id="0" label="y+ pressure" var="OutletBC">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Neumann" label="mixture_fraction">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Neumann" label="mixture_fraction_2">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Neumann" label="heat_loss">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Neumann" label="enthalpy">
 <value>0.0</value>
 </BCType>
 <!-- for RMCRT-->
 <BCType id="all" label="temperature" var="Neumann">
 <value> 0</value>
 </BCType>
 <BCType id="all" label="abskg" var="Dirichlet">

131

 <value> 1</value>
 </BCType>
 </Face>
 <!-- z- Face Wall-->
 <Face side="z-" name="zMinus wall">
 <!-- Momentum BCs -->
 <BCType id="all" label="z- wall" var="WallBC">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Neumann" label="mixture_fraction">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Neumann" label="mixture_fraction_2">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Neumann" label="heat_loss">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Neumann" label="enthalpy">
 <value>0.0</value>
 </BCType>
 <!-- for RMCRT-->
 <BCType id="all" label="temperature" var="Dirichlet">
 <value> 400</value>
 </BCType>
 <BCType id="all" label="abskg" var="Dirichlet">
 <value> 1</value>
 </BCType>
 </Face>
 <!--__________________________________-->
 <!-- Annular Ring -->
 <Face annulus="z-" origin="0.0 0.0 0.0" inner_radius="0.0165" outer_radius="0.0225"
name="annulus">
 <!-- Momentum BCs -->
 <BCType id="all" label="inlet" var="VelocityInlet">
 <value>[0.0,0.0,77.1]</value>
 </BCType>
 <BCType id="0" var="Dirichlet" label="mixture_fraction">
 <!--ILH correct? -->
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Dirichlet" label="mixture_fraction_2">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Dirichlet" label="heat_loss">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Neumann" label="enthalpy">
 <value>0.0</value>

132

 </BCType>
 <!-- for RMCRT-->
 <BCType id="all" label="temperature" var="Dirichlet">
 <value> 298</value>
 </BCType>
 <BCType id="all" label="abskg" var="Dirichlet">
 <value> 1</value>
 </BCType>
 </Face>
 <!--__________________________________ -->
 <!-- Primary Flow Inlet -->
 <Face circle="z-" origin="0.0 0.0 0.0" radius="0.0105" name="primary">
 <!-- Momentum BCs -->
 <BCType id="all" label="inlet" var="VelocityInlet">
 <value>[0.0,0.0,80.1]</value>
 </BCType>
 <BCType id="0" var="Dirichlet" label="mixture_fraction">
 <!--ILH correct? -->
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Dirichlet" label="mixture_fraction_2">
 <value>1.0</value>
 </BCType>
 <BCType id="0" var="Dirichlet" label="heat_loss">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Neumann" label="enthalpy">
 <value>0.0</value>
 </BCType>
 <!-- for RMCRT-->
 <BCType id="all" label="temperature" var="Dirichlet">
 <value> 298</value>
 </BCType>
 <BCType id="all" label="abskg" var="Dirichlet">
 <value> 1</value>
 </BCType>
 </Face>
 <Face side="z+">
 <BCType id="0" var="OutletBC" label="the outlet">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Neumann" label="mixture_fraction">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Neumann" label="mixture_fraction_2">
 <value>0.0</value>
 </BCType>
 <BCType id="0" var="Neumann" label="heat_loss">
 <value>0.0</value>

133

 </BCType>
 <BCType id="0" var="Neumann" label="enthalpy">
 <value>0.0</value>
 </BCType>
 <!-- for RMCRT-->
 <BCType id="all" label="temperature" var="Neumann">
 <value> 0</value>
 </BCType>
 <BCType id="all" label="abskg" var="Dirichlet">
 <value> 1</value>
 </BCType>
 </Face>
 </BoundaryConditions>
 </Grid>
 <PhysicalConstants>
 <gravity>[-9.8,0,0]</gravity>
 <reference_point>[-1,-1,-1]</reference_point>
 <viscosity>0.000020</viscosity>
 </PhysicalConstants>
 <CFD>
 <!-- ARCHES specification -->
 <ARCHES>
 <EfficiencyCalculator>
 <calculator type="combustion_efficiency" label="comb_eff">
 <mixture_fraction mf_label_1="mixture_fraction" mf_label_2="mixture_fraction_2"
N="2"/>
 <phi_label>mixture_fraction_2</phi_label>
 <phi_at_feq1>1.0</phi_at_feq1>
 </calculator>
 </EfficiencyCalculator>
 <TimeIntegrator>
 <ExplicitIntegrator order="second"/>
 </TimeIntegrator>
 <TransportEqns>
 <Eqn label="mixture_fraction" type="CCscalar">
 <doDiff>true</doDiff>
 <doConv>true</doConv>
 <conv_scheme>upwind</conv_scheme>
 <determines_properties/>
 <initialization type="constant">
 <constant>0.0</constant>
 </initialization>
 <Clipping>
 <low>0.0</low>
 <high>1.0</high>
 <tol>1e-10</tol>
 </Clipping>
 <src label="pos_source">
 <weight>1</weight>

134

 </src>
 <turbulentPrandtlNumber>0.40000000000000002</turbulentPrandtlNumber>
 <scaling_const>1</scaling_const>
 </Eqn>
 <Eqn label="mixture_fraction_2" type="CCscalar">
 <doDiff>true</doDiff>
 <doConv>true</doConv>
 <conv_scheme>upwind</conv_scheme>
 <determines_properties/>
 <initialization type="constant">
 <constant>0.0</constant>
 </initialization>
 <Clipping>
 <low>0.0</low>
 <high>1.0</high>
 <tol>1e-10</tol>
 </Clipping>
 <src label="pos_source">
 <weight>-1.0</weight>
 </src>
 <turbulentPrandtlNumber>0.40000000000000002</turbulentPrandtlNumber>
 <scaling_const>1</scaling_const>
 </Eqn>
 <Eqn label="enthalpy" type="CCscalar">
 <doDiff>true</doDiff>
 <doConv>true</doConv>
 <conv_scheme>upwind</conv_scheme>
 <determines_properties/>
 <initialization type="tabulated">
 <depend_varname>adiabaticenthalpy</depend_varname>
 </initialization>
 <src label="div_q">
 <weight>-1</weight>
 </src>
 <turbulentPrandtlNumber>0.40000000000000002</turbulentPrandtlNumber>
 <scaling_const>1</scaling_const>
 </Eqn>
 <Sources>
 <src label="pos_source" type="westbrook_dryer">
 <A>4e9
 <E_R>24358</E_R>
 <X>1</X>
 <Y>4</Y>
 <m>-0.3</m>
 <n>1.3</n>
 <stoich_fuel_O2_massratio>0.25</stoich_fuel_O2_massratio>
 <fuel_mass_fraction>1.0</fuel_mass_fraction>
 <cstar_fraction_label>C*H4</cstar_fraction_label>
 <fp_label>mixture_fraction_2</fp_label>

135

 <eta_label>mixture_fraction</eta_label>
 <flammability_limit>
 <const_diluent>0.0</const_diluent>
 <lower slope="0.046" intercept="0.015"/>
 <upper slope="-0.286" intercept="0.089"/>
 </flammability_limit>
 <hot_spot>
 <geom_object>
 <difference label="pilot">
 <cylinder>
 <bottom>[0,0,0.01]</bottom>
 <top>[0,0,0.013]</top>
 <radius>0.018</radius>
 <cylinder_end>false</cylinder_end>
 <axisymmetric_end>false</axisymmetric_end>
 <axisymmetric_side>false</axisymmetric_side>
 </cylinder>
 <cylinder>
 <bottom>[0,0,0.01]</bottom>
 <top>[0,0,0.013]</top>
 <radius>0.012</radius>
 <cylinder_end>false</cylinder_end>
 <axisymmetric_end>false</axisymmetric_end>
 <axisymmetric_side>false</axisymmetric_side>
 </cylinder>
 </difference>
 </geom_object>
 <start_time>0.0</start_time>
 <stop_time>1.0</stop_time>
 <temperature>2000</temperature>
 </hot_spot>
 <temperature_label>temperature</temperature_label>
 <density_label>density</density_label>
 <o2_label>O2</o2_label>
 </src>
 <!-- <src label="div_q" type="do_radiation">
 <calc_frequency>10</calc_frequency>
 <calc_on_all_RKsteps>false</calc_on_all_RKsteps>
 <soot_label>soot</soot_label>
 <DORadiationModel>
 <opl>3.0</opl>
 <LinearSolver type="hypre">
 <res_tol>1.0e-10</res_tol>
 <ksptype>gmres</ksptype>
 <pctype>jacobi</pctype>
 <max_iter>275</max_iter>
 </LinearSolver>
 </DORadiationModel>
 </src>

136

-->
 <src label="div_q" type="rmcrt_radiation">
 <calc_frequency>10</calc_frequency>
 <RMCRT>
 <randomSeed> true </randomSeed>
 <nDivQRays> 16 </nDivQRays>
 <Threshold> 0.05 </Threshold>
 <StefanBoltzmann> 5.67051e-8 </StefanBoltzmann>
 <solveBoundaryFlux> true </solveBoundaryFlux>
 <nFluxRays> 100 </nFluxRays>
 <allowReflect> false </allowReflect>
 <property_calculator type="hottel_sarofim">
 </property_calculator>
 <ignore_BC_bulletproofing> false </ignore_BC_bulletproofing>
 <benchmark>0</benchmark>
 <CCRays>false</CCRays>
 <VirtRadiometer>true</VirtRadiometer>
 <VRViewAngle>180</VRViewAngle>
 <VROrientation>[-1, 0, 0]</VROrientation>
 <VRLocationsMin>[0, 100, 0]</VRLocationsMin>
 <VRLocationsMax>[199, 100, 199]</VRLocationsMax>
 <nRadRays>1000</nRadRays>
 <sigmaScat>0</sigmaScat>
 <abskgBench4>1</abskgBench4>
 <solveDivQ>true</solveDivQ>
 <applyFilter>false</applyFilter>
 </RMCRT>
 <calc_on_all_RKsteps>false</calc_on_all_RKsteps>
 <abskp_label>abskp</abskp_label>
 <psize_label>length</psize_label>
 <ptemperature_label>temperature</ptemperature_label>
 </src>
 </Sources>
 </TransportEqns>
 <Turbulence model="compdynamicprocedure">
 <variance_coefficient>0.1</variance_coefficient>
 <turbulentPrandtlNumber>0.4</turbulentPrandtlNumber>
 <dynamicScalarModel>false</dynamicScalarModel>
 <filter_cs_squared>false</filter_cs_squared>
 </Turbulence>
 <Properties>
 <ClassicTable>
 <inputfile>oxyflam_gas.mix</inputfile>
 <rcce eta_label="mixture_fraction" fp_label="mixture_fraction_2"
hl_label="heat_loss"/>
 <cold_flow>false</cold_flow>
 <temperature_label_name>temperature</temperature_label_name>
 </ClassicTable>
 <filter_drhodt>false</filter_drhodt>

137

 <first_order_drhodt>true</first_order_drhodt>
 <inverse_density_average>false</inverse_density_average>
 <mixture_fraction_label>scalarSP</mixture_fraction_label>
 </Properties>
 <PropertyModels>
 <model type="heat_loss" label="heat_loss">
 <initialization type="constant">
 <constant>0.0</constant>
 </initialization>
 <enthalpy_label>enthalpy</enthalpy_label>
 <sensible_enthalpy_label>sensibleenthalpy</sensible_enthalpy_label>
 <adiabatic_enthalpy_label>adiabaticenthalpy</adiabatic_enthalpy_label>
 <use_Ha_lookup>false</use_Ha_lookup>
 </model>
 <model type="empirical_soot" label="soot">
 <initialization type="constant">
 <constant>0.0</constant>
 </initialization>
 <carbon_content_fuel>0.75</carbon_content_fuel>
 <carbon_content_ox>0.0</carbon_content_ox>
 <E_st>0.08</E_st>
 <temperature_label>temperature</temperature_label>
 <mixture_fraction_label>mixture_fraction</mixture_fraction_label>
 <density_label>density</density_label>
 <absorption_label>absorpIN</absorption_label>
 <soot_density>1950</soot_density>
 <E_cr>1</E_cr>
 <E_inf>2</E_inf>
 <C1>0.10000000000000001</C1>
 </model>
 <model type="scalsim_variance" label="scalar_var">
 <initialization type="constant">
 <constant>0.0</constant>
 </initialization>
 <mixture_fraction_label>mixture_fraction</mixture_fraction_label>
 <density_label>density</density_label>
 <variance_coefficient>0.14</variance_coefficient>
 <!-- Warning: not a good default value -->
 </model>
 </PropertyModels>
 <BoundaryConditions>
 <suppress_corner_recirculation/>
 <use_new_bcs/>
 <wall_csmag>0</wall_csmag>
 </BoundaryConditions>
 <ExplicitSolver>
 <initial_dt>0.05</initial_dt>
 <variable_dt>true</variable_dt>
 <PressureSolver>

138

 <Parameters>
 <tolerance> 1.0e-10</tolerance>
 <solver> cg </solver>
 <preconditioner>pfmg </preconditioner>
 <maxiterations> 75 </maxiterations>
 <setupFrequency>1 </setupFrequency>
 <npre>1</npre>
 <npost>1</npost>
 <skip>0</skip>
 <jump>0</jump>
 <logging>0</logging>
 <relax_type>1</relax_type>
 </Parameters>
 <normalize_pressure>false</normalize_pressure>
 <do_only_last_projection>false</do_only_last_projection>
 </PressureSolver>
 <MomentumSolver>
 <convection_scheme>upwind</convection_scheme>
 <filter_divergence_constraint>false</filter_divergence_constraint>
 </MomentumSolver>
 <scalarUnderflowCheck>false</scalarUnderflowCheck>
 <extraProjection>false</extraProjection>
 <turbModelCalcFreq>1</turbModelCalcFreq>
 <turbModelCalcForAllRKSteps>true</turbModelCalcForAllRKSteps>
 <restartOnNegativeDensityGuess>false</restartOnNegativeDensityGuess>
 <NoisyDensityGuess>false</NoisyDensityGuess>
 <kineticEnergy_fromFC>false</kineticEnergy_fromFC>
 <maxDensityLag>0</maxDensityLag>
 </ExplicitSolver>
 <turnonMixedModel>false</turnonMixedModel>
 <recompileTaskgraph>false</recompileTaskgraph>
 </ARCHES>
 </CFD>
</Uintah_specification>

REFERENCES

[1] Burns, S., and Christon, M., 1997. “Spatial domain-based parallelism in large-scale,
participating-media, radiative transport applications”. Numerical Heat Transfer, Part
B: Fundamentals, 31(4), pp. 401–421.

[2] Tieszen, S., 2001. “On the fluid mechanics of fires 1”. Annual review of fluid
mechanics, 33(1), pp. 67–92.

[3] Modest, M. F., 2005. “Multiscale modeling of turbulence, radiation, and combustion
interactions in turbulent flames”. Int. J. Multiscale Comput. Eng, 3(1), p. 85.

[4] Hall, R. J., and Vranos, A., 1994. “Efficient calculations of gas radiation from turbu-
lent flames”. International journal of heat and mass transfer, 37(17), pp. 2745–2750.

[5] Wang, A., Modest, M. F., Haworth, D. C., and Wang, L., 2008. “Monte carlo
simulation of radiative heat transfer and turbulence interactions in methane/air jet
flames”. Journal of Quantitative Spectroscopy and Radiative Transfer, 109(2),
pp. 269–279.

[6] Song, T., and Viskanta, R., 1987. “Interaction of radiation with turbulence-
application to a combustion system”. J. Thermophy. Heat Transfer;(United States),
1.

[7] Soufiani, A., Mignon, P., and Taine, J., 1990. “Radiation-turbulence interaction in
channel flows of infrared active gases”. In Proceedings of the ninth international heat
transfer conference, Vol. 6, pp. 403–408.

[8] Coelho, P., 2007. “Numerical simulation of the interaction between turbulence and
radiation in reactive flows”. Progress in energy and combustion science, 33(4),
pp. 311–383.

[9] Gonçalves dos Santos, R., Lecanu, M., Ducruix, S., Gicquel, O., Iacona, E., and
Veynante, D., 2008. “Coupled large eddy simulations of turbulent combustion and
radiative heat transfer”. Combustion and Flame, 152(3), pp. 387–400.

[10] Wu, Y., Haworth, D., Modest, M., and Cuenot, B., 2005. “Direct numerical simulation
of turbulence/radiation interaction in premixed combustion systems”. Proceedings of
the Combustion Institute, 30(1), pp. 639–646.

[11] Deshmukh, K., Haworth, D., and Modest, M., 2007. “Direct numerical simulation of
turbulence–radiation interactions in homogeneous nonpremixed combustion systems”.
Proceedings of the Combustion Institute, 31(1), pp. 1641–1648.

[12] Coats, C., 1996. “Coherent structures in combustion”. Progress in Energy and
Combustion Science, 22(5), pp. 427–509.

140

[13] Snegirev, A. Y., 2004. “Statistical modeling of thermal radiation transfer in buoyant
turbulent diffusion flames”. Combustion and flame, 136(1), pp. 51–71.

[14] Sacadura, J.-F., 2005. “Radiative heat transfer in fire safety science”. Journal of
Quantitative Spectroscopy and Radiative Transfer, 93(1), pp. 5–24.

[15] Siegel, R., 2001. Thermal radiation heat transfer. Taylor & Francis.

[16] Smith, P., Thornock, J., Hinckley, D., and Hradisky, M., 2011. “Large eddy simulation
of industrial flares”. In Proceedings of the 2011 companion on High Performance
Computing Networking, Storage and Analysis Companion, ACM, pp. 137–138.

[17] Krishnamoorthy, G., 2006. “Predicting radiative heat transfer in parallel computa-
tions of combustion”. PhD thesis, THE UNIVERSITY OF UTAH.

[18] Lockwood, F., and Shah, N., 1981. “A new radiation solution method for incorpora-
tion in general combustion prediction procedures”. In Symposium (International) on
Combustion, Vol. 18, Elsevier, pp. 1405–1414.

[19] Raithby, G., and Chui, E., 1990. “A finite-volume method for predicting a radiant
heat transfer in enclosures with participating media”. Journal of Heat Transfer
(Transactions of the ASME (American Society of Mechanical Engineers), Series
C);(United States), 112(2).

[20] Coelho, P., Teerling, O., and Roekaerts, D., 2003. “Spectral radiative effects and
turbulence/radiation interaction in a non-luminous turbulent jet diffusion flame”.
Combustion and Flame, 133(1), pp. 75–91.

[21] Chai, J., Lee, H., and Patankar, S., 1993. “Ray effect and false scattering in the
discrete ordinates method”. Numerical Heat Transfer, Part B Fundamentals, 24(4),
pp. 373–389.

[22] Snegirev, A. Y., and Isaev, S., 2007. “Turbulent combustion and thermal radiation in
a massive fire”. Advanced Combustion and Aerothermal Technologies, pp. 197–209.

[23] Snegirev, A. Y. “Large-eddy simulations of buoyant turbulent diffusion flames exposed
to crosswinds and circulating flows”. In European Combustion Meeting.

[24] Zhang, J., Gicquel, O., Veynante, D., and Taine, J., 2009. “Monte carlo method of
radiative transfer applied to a turbulent flame modeling with les”. Comptes Rendus
Mécanique, 337(6-7), pp. 539–549.

[25] for Computational Sciences, N. C., 2012. Jaguar. On the WWW, March. URL
http://www.nccs.gov/computing-resources/jaguar.

[26] Kindratenko, V., and Trancoso, P., 2011. “Trends in high-performance computing”.
Computing in Science & Engineering, 13(3), pp. 92–95.

[27] Stowell, M. L., Fasenfest, B. J., and White, D. A., 2008. “Investigation of radar prop-
agation in buildings: a 10-billion element cartesian-mesh fetd simulation”. Antennas
and Propagation, IEEE Transactions on, 56(8), pp. 2241–2250.

[28] Martin, W., Majumdar, A., Rathkopf, J., and Litvin, M., 1993. Experiences with
different parallel programming paradigms for monte carlo particle transport leads to
a portable toolkit for parallel monte carlo. Tech. rep., Lawrence Livermore National
Lab., CA (United States).

141

[29] Wise, J., and Abel, T., 2010. “enzo+ moray: radiation hydrodynamics adaptive
mesh refinement simulations with adaptive ray tracing”. Monthly Notices of the Royal
Astronomical Society.

[30] Abel, T., and Wandelt, B., 2002. “Adaptive ray tracing for radiative transfer around
point sources”. Monthly Notices of the Royal Astronomical Society, 330(3), pp. L53–
L56.

[31] Kuiper, R., Klahr, H., Dullemond, C., Kley, W., and Henning, T., 2010. “Fast and
accurate frequency-dependent radiation transport for hydrodynamics simulations in
massive star formation”. Arxiv preprint arXiv:1001.3301.

[32] Marakis, J., Chamico, J., Brenner, G., and Durst, F., 2001. “Parallel ray tracing
for radiative heat transfer: Application in a distributed computing environment”.
International Journal of Numerical Methods for Heat &# 38; Fluid Flow, 11(7),
pp. 663–681.

[33] Cleveland, M., 2011. “Radiative heat transfer in combustion applications: parallel
efficiencies of two gas models, turbulent radiation interactions in particulate laden
flows, and coarse mesh finite difference acceleration for improved temporal accuracy”.

[34] Marrs, R., Moss, W., and Whitlock, B., 2007. “Thermal radiation from nuclear
detonations in urban environments”. Livermore, CA: Lawrence Livermore National
Laboratory Report UCRLTR-231593.

[35] Veljkovic, I., and Plassmann, P., 2005. “Scalable photon monte carlo algorithms and
software for the solution of radiative heat transfer problems”. High Performance
Computing and Communications, pp. 928–937.

[36] Wang, A., 2007. “Investigation of turbulence–radiation interactions in”. PhD thesis,
The Pennsylvania State University.

[37] Mehta, R., 2008. Detailed modeling of soot formation and turbulence-radiation
interactions in turbulent jet flames. ProQuest.

[38] Rijkhorst, E., Plewa, T., Dubey, A., and Mellema, G., 2005. “Hybrid characteristics:
3d radiative transfer for parallel adaptive mesh refinement hydrodynamics”. Arxiv
preprint astro-ph/0505213.

[39] Viswanath, K., Veljkovic, I., and Plassmann, P., 2008. “Parallel load balancing
heuristics for radiative heat transfer calculations”.

[40] Sawetprawichkul, A., Hsu, P., and Mitra, K., 2002. “Parallel computing of three-
dimensional monte carlo simulation of transient radiative transfer in participating
media”. In Proceedings of the Eighth American Institute of Aeronautics and As-
tronautics/American Society of Mechanical Engineers Joint Thermophysics and Heat
Transfer Conference, St Louis, MI, pp. 1–10.

[41] Farmer, J., and Howell, J., 1998. “Comparison of Monte Carlo strategies for radiative
transfer in participating media”. Advances in heat transfer, 31, pp. 333–429.

[42] Wendt, K. A., Drut, J. E., and Lähde, T. A., 2011. “Toward large-scale hybrid monte
carlo simulations of the hubbard model on graphics processing units”. Computer
Physics Communications, 182(8), pp. 1651–1656.

142

[43] Gentile, N., 2009. “Implicit monte carlo radiation transport in multi-physics simula-
tions”. American Nuclear Society.

[44] Hottel, H., and Cohen, E., 1968. Radiative transfer. McGraw Hill.

[45] Sun, X., 2009. “Reverse Monte Carlo ray-tracing for radiative heat transfer in
combustion systems”.

[46] Howell, J., 1998. “The Monte Carlo method in radiative heat trans-
fer”. TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS
JOURNAL OF HEAT TRANSFER, 120, pp. 547–560.

[47] Howell, J., and Perlmutter, M., 1964. “Radiant Transfer Through a Gray Gas Between
Concentric Cylinders Using Monte Carlo”. Journal of Heat Transfer, 86, pp. 169–
179.

[48] Howell, J., and Perlmutter, M., 1964. “Monte Carlo solution of thermal transfer in a
nongrey nonisothermal gas with temperature dependent properties”. AlChE Jouranl,
10(4), pp. 562–567.

[49] Fleck Jr, J., 1961. The calculation of nonlinear radiation transport by a monte carlo
method. Tech. rep., Lawrence Radiation Lab., Univ. of California, Livermore.

[50] Fleck, J., 1961. “The calculation of nonlinear radiation transport by a monte carlo
method: statistical physics”. Methods in Computational Physics, 1, pp. 43–65.

[51] Lee, M., Redner, R., and Uselton, S., 1985. “Statistically optimized sampling for
distributed ray tracing”. In Proceedings of the 12th annual conference on Computer
graphics and interactive techniques, ACM, pp. 61–68.

[52] Pegoraro, V., Wald, I., and Parker, S., 2008. “Sequential Monte Carlo Adaptation in
Low-Anisotropy Participating Media”. In Computer Graphics Forum, Vol. 27, Wiley
Online Library, pp. 1097–1104.

[53] Pegoraro, V., Brownlee, C., Shirley, P., and Parker, S., 2008. “Towards interactive
global illumination effects via sequential Monte Carlo adaptation”. In Interactive Ray
Tracing, 2008. RT 2008. IEEE Symposium on, IEEE, pp. 107–114.

[54] Jensen, K., Ripoll, J., Wray, A., Joseph, D., and El Hafi, M., 2007. “On various
modeling approaches to radiative heat transfer in pool fires”. Combustion and flame,
148(4), pp. 263–279.

[55] Jeans, J., 1917. “Stars, gaseous, radiative transfer of energy”. Monthly Notices of the
Royal Astronomical Society, 78, pp. 28–36.

[56] Mengüç, M., and Viskanta, R., 1985. “Radiative transfer in three-dimensional
rectangular enclosures containing inhomogeneous, anisotropically scattering media”.
Journal of Quantitative Spectroscopy and Radiative Transfer, 33(6), pp. 533–549.

[57] Chandrasekhar, S., 1960. Radiative transfer. Dover Pubns.

[58] Antal, M., and Lee, C., 1976. “Charged particle mass and energy transport in a
thermonuclear plasma”. Journal of Computational Physics, 20(3), pp. 298–312.

143

[59] Jamaluddin, A., and Smith, P., 1988. “Predicting radiative transfer in axisymmetric
cylindrical enclosures using the discrete ordinates method”. Combustion science and
technology, 62(4-6), pp. 173–186.

[60] Fiveland, W., 1984. “Discrete-ordinates solutions of the radiative transport equation
for rectangular enclosures”. Journal of Heat Transfer, 106, p. 699.

[61] Selcuk, N., and Kayakol, N., 1995. “Evaluations of discrete transfer model for
radiative transfer in combustors”. ICHMT DIGITAL LIBRARY ONLINE, 7.

[62] Abraham, J., and Magi, V., 1997. “Application of the discrete ordinates method
to compute radiant heat loss in a diesel engine”. Numerical Heat Transfer, Part A
Applications, 31(6), pp. 597–610.

[63] Liou, B., and Wu, C., 1996. “Composite discrete-ordinate solutions for radiative
transfer in a two-layer medium with fresnel interfaces”. Numerical Heat Transfer,
Part A Applications, 30(7), pp. 739–751.

[64] Alan Humphrey, Qingyu Meng, M. B. T. H., 2012. “Radiation modeling using the
uintah heterogeneous cpu/gpu runtime system”.

[65] Kourganoff, V., 1963. Basic methods in transfer problems. Dover Publications.

[66] Kourganoff, V., 1958. Neutron Transport Theory. Oxford University Press.

[67] Murray, R., 1957. Nuclear Reactor Physics. Prentice Hall.

[68] Hottel, H., and Cohen, E., 1958. “Radiant heat exchange in a gas-filled enclosure:
Allowance for nonuniformity of gas temperature”. AIChE Journal, 4(1), pp. 3–14.

[69] Carvalho, M., Farias, T., and Fontes, P., 1991. “Predicting radiative heat transfer
in absorbing, emitting, and scattering media using the discrete transfer method”.
Fundamentals of radiation heat transfer, 160, pp. 17–26.

[70] Rousse, D., 2000. “Numerical predictions of two-dimensional conduction, convection,
and radiation heat transfer. i. formulation”. International journal of thermal sciences,
39(3), pp. 315–331.

[71] Meng, F., McKenty, F., and Camarero, R., 1993. “Radiative heat transfer by the
discrete transfer method using an unstructured mesh”. ASME-PUBLICATIONS-
HTD, 244, pp. 55–55.

[72] Feldheim, V., and Lybaert, P., 2004. “Solution of radiative heat transfer problems
with the discrete transfer method applied to triangular meshes”. Journal of compu-
tational and applied mathematics, 168(1), pp. 179–190.

[73] LI, H., and ZHOU, H., 2003. “Luji-dong, zheng chu-guang (school of energy and power
engineering, huazhong university of science & technology, wuhan 430074, china);
an improved discrete transfer method for radiative heat transfer in furnaces [j]”.
Proceedings of the Csee, 4.

[74] Almasi, G., 1986. “Research in highly parallel computer systems”. IEEE Electro
Technology Review, 2.

144

[75] Govaerts, Y., and Verstraete, M., 2002. “Raytran: A Monte Carlo ray-tracing model
to compute light scattering in three-dimensional heterogeneous media”. Geoscience
and Remote Sensing, IEEE Transactions on, 36(2), pp. 493–505.

[76] Heirich, A., and Arvo, J., 1998. “A competitive analysis of load balancing strategies
for parallel ray tracing”. The Journal of Supercomputing, 12(1), pp. 57–68.

[77] dos Santos, A., Teixeira, J., de Farias, T., Teichrieb, V., and Kelner, J., 2009. “kd-tree
traversal implementations for ray tracing on massive multiprocessors: A comparative
study”. In Computer Architecture and High Performance Computing, 2009. SBAC-
PAD’09. 21st International Symposium on, IEEE, pp. 41–48.

[78] Despres, P., Rinkel, J., Hasegawa, B., and Prevrhal, S., 2008. “Stream processors: a
new platform for monte carlo calculations”. In Journal of Physics: Conference Series,
Vol. 102, IOP Publishing, p. 012007.

[79] Spafford, K., Meredith, J. S., and Vetter., J. S., 2011. “Quantifying numa and
contention effects in multi-gpu systems”. Proceedings of the Fourth Workshop on
General Purpose Processing on Graphics Processing Units, GPGPU(11), p. 17.

[80] J.S. Vetter, R. Glassbrook, J. D. K. S. B. L. S. M. J. M. J. R. P. R. K. S.,
and Yalamanchili, S., 2013. Keeneland web page. On the WWW, March. URL
http://keeneland.gatech.edu/.

[81] J. D. de St. Germain, J. McCorquodale, S. G. P., and Johnson, C. R., 2000. “Uin-
tah: A massively parallel problem solving environment”. Ninth IEEE International
Symposium on High Performance and Distributed Computing, p. 3341.

[82] Berzins, M., 2012. “Status of release of the uintah computational framework. technical
report uusci-2012-001”. Scientific Computing and Imaging Institute.

[83] P. J. Smith, R.Rawat, J. S. S. K. S. B., and Violi, A., 2003. “Large eddy simulation of
accidental fires using massively parallel computers”. 18th AIAA Computational Fluid
Dynamics Conference.

[84] J.Spinti, J. Thornock, E. E. P. S., and Sarofim, A., 2008. “Heat transfer to objects
in pool fires, in transport phenomena in fires”. Transport Phenomena in Fires,
Southampton.

[85] J. Schmidt, J. Thornock, J. S., and Berzins, M., 2012. “Large scale parallel solution
of incompressible flow problems using uintah and hypre. technical report uusci-2012-
002”. Scientific Computing and Imaging Institute.

[86] I. Hunsaker, J. Thornock, T. H. P. J. S., 2013. “Massively-parallelized reciprocal
monte-carlo ray tracing for radiative transfer coupled with turbulent les combustion
simulations”. 8th US National Combustion Meeting.

[87] Modest, M., 2003. Radiative heat transfer. Academic Pr.

[88] Tessé, L., Dupoirieux, F., and Taine, J., 2004. “Monte carlo modeling of radiative
transfer in a turbulent sooty flame”. International journal of heat and mass transfer,
47(3), pp. 555–572.

145

[89] Tessé, L., Dupoirieux, F., Zamuner, B., and Taine, J., 2002. “Radiative transfer in real
gases using reciprocal and forward monte carlo methods and a correlated-k approach”.
International Journal of Heat and Mass Transfer, 45(13), pp. 2797–2814.

[90] Zhang, Y., Gicquel, O., and Taine, J., 2012. “Optimized emission-based reciprocity
monte carlo method to speed up computation in complex systems”. International
Journal of Heat and Mass Transfer.

[91] Walters, D., and Buckius, R., 1992. “Rigorous development for radiation heat transfer
in nonhomogeneous absorbing, emitting and scattering media”. International Journal
of Heat and Mass Transfer, 35(12), pp. 3323–3333.

[92] Matsumoto, M., and Nishimura, T., 1998. “Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator”. ACM Transactions on
Modeling and Computer Simulation (TOMACS), 8(1), pp. 3–30.

[93] Amanatides, J., and Woo, A., 1987. “A fast voxel traversal algorithm for ray tracing”.
In Eurographics, Vol. 87, Citeseer, p. 10.

[94] Parker, S., Guilkey, J., and Harman, T., 2006. “A component-based parallel
infrastructure for the simulation of fluid–structure interaction”. Engineering with
Computers, 22(3), pp. 277–292.

[95] Glassner, A., 1991. “An introduction to ray tracing”.

[96] Siegel, R., 1987. “Transient radiative cooling of a droplet-filled layer”. ASME Journal
of Heat Transfer, 109(159-164).

[97] Mengucc, M., Manickavasagam, S., and D’sa, D., 1994. “Determination of radiative
properties of pulverized coal particles from experiments”. Fuel, 73(4), pp. 613–625.

[98] Spinti, J., Smith, P. J., Thornock, J. N., and Borodai, S., 2007. “Validation of les
based predictions of heat flux to objects in transportation fuel fires”. In The 2007
Annual Meeting.

[99] Simeonova Nathan, L., 2012. “Numerical implementation of models for radiative
properties of molecular gases and particulate media in combustion applications”. PhD
thesis, THE UNIVERSITY OF UTAH.

[100] Adams, B. R., 1993. “Computational evaluation of mechanisms affecting radiation
in gas-and coal-fired industrial furnaces”. PhD thesis, Department of Mechanical
Engineering, University of Utah.

[101] Goodwin, D., and Mitchner, M., 1989. “Flyash radiative properties and effects on
radiative heat transfer in coal-fired systems”. International Journal of Heat and Mass
Transfer, 32(4), pp. 627–638.

[102] Qingyu. Meng, M. B., and Schmidt, J., 2011. “Using hybrid parallelism to improve
memory use in the uintah framework.”. Proceedings of the 2011 TeraGrid Conference.

[103] Ricks, A. T., 2010. Requirements for radiometer model in Fuego/Syrinx. Technical
report, Sandia National Laboratories, Albuquerque, NM, February.

[104] Weisstein, G., 2011. Sphere point picking. On the WWW, March. URL
http://mathworld.wolfram.com/SpherePointPicking.html+.

146

[105] Figueroa, V., 2002. Jpl-nasa propellant fire test series. Tech. rep., Sandia National
Laboratories, Albuquerque.

[106] Luketa, A., R. V. D. S. G. D. S. M., and Figueroa, V. “Validation and uncertainty
quantification of fuego simulations of calorimeter heating in a wind-driven hydrocar-
bon pool fire”.

[107] I. Hunsaker, T. Harman, J. T., and Smith, P. J., 2011. “Efficient parallelization of
rmcrt for large scale les combustion simulations”. AIAA International Conference.

[108] N. Lallemant, J. D., and Weber, R., 1997. “Analysis of the experimental data collected
during the oxyflam 1 and oxyflam 2 experiments”. International Flame Research
Foundation.

