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ABSTRACT
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1. Introduction9

Turbulence parameterization methodology has had an important role in model handling of10

clouds. Early versions of turbulence parameterizations used a diagnostic equation to solve for11

K, the eddy viscosity (Pielke 1974). Other methods sought a prognostic turbulent kinetic energy12

(TKE) equation though even second-moment schemes at times had difficulty with vertical trans-13

port of TKE (Yamada and Mellor 1975). Third-moment turbulent closure schemes have been used14

to better capture TKE in the boundary layer and in-cloud (Krueger 1988).15

2. Model Background16

The System for Atmospheric Modeling (SAM) is used throughout this research as both the17

Large-Eddy Simulation (LES) model for 100 m grid spacing runs and as a Cloud-Resolving Model18

(CRM), and is detailed in Khairoutdinov and Randall (2003). SAM uses anelastic equations of19

motion in the dynamical core integrated with a third-order Adams-Bashforth scheme. Variables20

are staggered on an Arakawa C grid. The advection is handled with a three-dimensional positive21

definite monotonic scheme (Smolarkiewicz and Grabowski 1990). SAM prognoses the thermo-22

dynamical variables liquid water/ice moist static energy, total non-precipitating water, and total23

precipitating water. The model does not allow for supersaturation of water vapor, with cloud24

condensate diagnosed using an ”all-or-nothing” approach.25

Radiation in SAM is handled with either the Community Atmospheric Model (CAM) (Collins26

and Coauthors 2004) or the Rapid Radiative Transfer Model (RRTM) (Mlawer et al. 1997)27

schemes from the National Center for Atmospheric Research (NCAR) Community Climate Sys-28

tem Model (CCSM). Microphysics uses either the original SAM single-moment microphysics or29

the Morrison double-moment microphysics (Morrison et al. 2005).30

3



The model has periodic boundary conditions and a simple mixed-layer ocean. The Monin-31

Obukhov similarity theory is used for the surface fluxes. SAM has incorporated ISCCP, MODIS,32

and MISR cloud simulators with ISCCP simulator results used in this study (Klein and Jakob33

1999).34

For the turbulence closure scheme SAM comes with two options, a 1.5-order closure using a35

prognostic equation for the subgrid-scale turbulent kinetic energy (SGS-TKE) (Khairoutdinov and36

Kogan 1999), and a simple Smagorinsky closure (Khairoutdinov and Randall 2003). The former37

is used throughout this study and will be referred to as NOSHOC.38

A third closure scheme was added called Simplified Higher-Order Closure (SHOC) and is de-39

tailed in Bogenschutz and Krueger (2013). Similar to the NOSHOC method, SHOC also prog-40

noses SGS-TKE. An assumed joint PDF is used to diagnose SGS condensation and SGS buoy-41

ancy flux (Golaz et al. 2002a,b). The joint PDF is based on vertical velocity, liquid water potential42

temperature, and total water mixing ratio. Double Gaussian PDFs have been shown to fit cloud43

layers better than alternatives tested (Bogenschutz et al. 2010).44

NOSHOC does not diagnose SGS condensation and SGS buoyancy flux is diagnosed from the45

moist Brunt-Vaisala frequency. Instead, SHOC uses the diagnostic second-moment closure of46

Redelsperger and Sommeria (1986) and the diagnostic closure for the third moment of vertical47

velocity from Canuto et al. (2001).48

A key difference between NOSHOC and SHOC is in the handling of the length scale. In49

NOSHOC, the length scale is proportional to dz. Bogenschutz and Krueger (2013) note that having50

a length scale set to the vertical grid spacing is appropriate for high resolution simulations where51

the grid size is in the inertial subrange. In SHOC, the turbulence length scale is instead related52

to SGS-TKE and eddy length scales which have been shown to be effective for the convective53
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boundary layer (Teixeira and Cheinet 2004). Eddy diffusion schemes have been shown to perform54

well when the SGS-TKE profile can be predicted (Cheng et al. 2010).55

3. Model Runs56

Radiative convective equilibrium (RCE) modeling provides a simple proxy for the Earth’s cli-57

mate.58

Over 40 model runs have been performed to evaluate cloud and radiative property dependen-59

cies on a broad variety of cloud-resolving model (CRM) configurations. Variations in the model60

configurations include SST, horizontal grid size, microphysics scheme, and turbulence closure61

scheme. SSTs selected were 301 K and 305 K. Grid sizes used were 0.5, 1, 2, 4, 8, and 16 km.62

Runs with 0.5 km grid spacing were performed by Marat Khairoutdinov. Microphysics schemes63

were SAM single-moment microphysics or the M2005 double-moment microphysics (Morrison64

et al. 2005). Turbulence closure schemes used were standard SAM (NOSHOC) or SAM-SHOC.65

Runs performed were 50 day simulations.66

Runs were first performed on a 256x256 km grid with 84 vertical levels. However, many SAM-67

SHOC runs experienced self-aggregation and had to be rerun with a 128x128 or 64x64 km grid.68

Self-aggregation has been shown to occur in RCE simulations as a result of cold pools when69

domain sizes are sufficiently large (Jeevanjee and Romps 2013). When RCE simulations are not70

self-aggregating they have been shown to be qualitatively similar across a large range of GCM71

domain sizes (Silvers et al. 2016). The table of non-aggregating model simulations performed is72

shown in (Table 1).73

By having simulations at different SSTs the temperature dependence of cloud and radiative74

properties can be determined. Additionally, climate feedbacks can be calculated using radiative75

kernels (Soden et al. 2008). Eight additional 1 km runs were performed for each combination of76
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SST, microphysics scheme, and turbulence closure scheme on a 64km domain. The radiative ker-77

nels generated from ERA Interim over 2000-2010 (Zhou et al. 2013) were selected over CFMIP178

climate model derived kernels (Zelinka et al. 2012a,b) due to a closer match with SAM statistics79

file results.80

4. Results81

From the RCE simulations, dependencies on microphysics, turbulence parameterization scheme,82

grid spacing, and SST were evaluated. All results detailed in this section are 25-day averages of83

days 26-50 in model run simulations.84

Cloud water path (CWP) and ice water path (IWP) values are presented in Figure 1. There is85

a large difference in CWP and IWP depending on the microphysics scheme selected with higher86

CWP and much lower IWP in the double-moment runs. SHOC runs with single-moment mi-87

crophysics have lower CWP and IWP than the NOSHOC equivalents. Altering the grid spacing88

results in some phase differences with CWP increasing and IWP decreasing as grid spacing in-89

creases, with the increases in CWP much larger in magnitude than the decreases in IWP. The90

lower SST runs for SHOC had significantly lower CWP than the warmer SST SHOC run and the91

NOSHOC runs at either SST. These 301 K SHOC runs had very little grid size dependence on92

CWP.93

ISCCP simulated high and low cloud fractions are shown in Figure 2. Simulated high cloud94

fractions are higher for double-moment runs than single-moment runs. Grid size and SST depen-95

dencies are very similar for high cloud fraction compared to ice water path, and low cloud fraction96

compared to cloud water path. SHOC single-moment runs show a higher high cloud fraction than97

the NOSHOC runs despite the ice water path being higher for NOSHOC runs.98
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Cloud radiative effects are shown in Figure 3. Longwave (LW) cloud radiative effect is similar99

to high cloud fraction while the negative of shortwave (SW) cloud radiative effect is similar to100

low cloud fraction with the exception of a double-moment SHOC vs NOSHOC gap in LW cloud101

radiative effect which does not show up in high cloud fraction (Figure 3a-d). The SW cloud102

radiative effect has a larger influence on the net cloud radiative effect (Figure 3e-f). At large103

grid sizes all runs except 301 K SHOC runs have large negative value cloud radiative effects. For104

single-moment NOSHOC runs at the lowest grid sizes (0.5 km and 1 km) net cloud radiative effect105

is negative; however, for single-moment SHOC runs and all double-moment runs, the average net106

cloud radiative effect is positive for 1 km runs.107

Cloud fraction profiles as a function of temperature are shown in Figure 4. In all cases, low-level108

cloud fraction decreased as horizontal grid resolution increased. Upper-level cloud top tempera-109

ture was similar for all runs regardless of SST (a,b,c,d vs e,f,g,h). Upper-level cloud fractions were110

slightly higher in SHOC runs than their NOSHOC equivalents (c,d,g,h vs a,b,e,f) and for double-111

moment runs than their single-moment equivalents (b,d,f,h vs a,c,e,g). For NOSHOC runs, lower112

resolution runs had cooler maximum cloud fraction level temperatures than the higher resolution113

runs. Lower resolution runs had higher max cloud fractions in all NOSHOC cases. Higher reso-114

lution single-moment runs for both SHOC and NOSHOC had a small increase in cloud fraction115

around 190 K.116

ISCCP simulations allowed for cloud histograms separated into 7 pressure bins and 7 optical117

thickness bins. A set of these results was made for all 8 (varying in SST, microphysics, and118

turbulence parameterization scheme) 1 km runs. The cloud fraction histograms were multiplied119

by the ERA interim LW and SW cloud forcing kernels from Zhou et al. (2013) to make histograms120

of net, LW, and -SW cloud forcing. Results for the NOSHOC 1M 301 K run are shown in Figure121

5. The primary cloud type is upper level cirrus in the top left corner of Figure 5a which results122
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in the largest LW and -SW cloud forcings to be in the two lower pressure levels. The net cloud123

forcing from sea surface temperature is slightly negative in the majority of bins with the exception124

of upper level cirrus bins which have a positive net cloud forcing.125

Average cloud feedbacks could be calculated from pairs of histograms differing in SST (Table126

2). The magnitude of the LW and SW cloud feedback was much higher for SHOC runs than127

NOSHOC runs. For single-moment NOSHOC runs LW and SW feedbacks were both positive128

resulting in a net cloud feedback of 0.53 Wm−2K−1. Double-moment NOSHOC runs resulted in129

a negative LW cloud feedback and a near zero net cloud feedback. LW feedbacks were positive130

for SHOC runs while SW feedbacks were negative for SHOC runs with roughly a 50% higher131

magnitude in SW feedback yielding a net cloud feedback of -0.55 and -0.50 Wm−2K−1 for single132

and double-moment SHOC respectively.133

Vertical layer profiles of cloud fraction and cloud feedbacks are shown in Figure 6. For all134

microphysics and turbulence closure scheme configurations the layer cloud fraction increases with135

warmer SST at the highest layer and decreases at the second highest layer. This change is primarily136

a result of the temperature level of cloud tops remaining roughly the same, as shown in Figure 4,137

while the height of the same temperature level increases with SST. The cloud fraction changes138

are quite small, on the order of 1%. In the lower to middle troposphere SHOC runs have a very139

slightly positive cloud fraction feedback while NOSHOC runs have a very slightly negative cloud140

fraction feedback. Net cloud feedback is positive for NOSHOC runs except for the highest layer141

and second lowest layer. For SHOC runs net cloud feedback is negative in the lower to middle142

troposphere and positive for the two highest layers. The net cloud feedback values are of lower143

magnitude at the highest levels than those of LW and SW cloud feedback, a result of the LW and144

SW feedbacks largely canceling out. Since there is almost no LW cloud feedback in the lower to145

middle troposphere the SW cloud feedback dominates in that range.146
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5. Conclusions147

Add in conclusions.148
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TABLE 1. Model simulations performed for the RCE case.

RCE Run Setup Grid Spacing (km)

SST Microphys. Turb. 16 8 4 2 1 0.5

301 K 1M NOSHOC 256 256 256 256 256 256

SHOC 128 128 128 128 128 N/A

2M NOSHOC 256 256 256 256 256 N/A

SHOC 128 128 64 64 64 N/A

305 K 1M NOSHOC 256 256 256 256 256 256

SHOC 128 128 128 256 256 N/A

2M NOSHOC 256 256 256 256 256 N/A

SHOC 128 128 64 64 64 N/A

Domain Size (km)

14



TABLE 2. Radiative kernel-derived cloud feedback values for 1 km RCE simulations computed over last

25-day averages.

227

228

Avg. Cloud Feedback (W m−2 K−1) 1M NOSHOC 2M NOSHOC 1M SHOC 2M SHOC

LW 0.17 -0.12 1.27 1.01

SW 0.36 0.17 -1.82 -1.51

Net 0.53 0.05 -0.55 -0.50
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FIG. 3. RCE simulation 25-day averaged values of: a) LW cloud radiative effect for single-moment micro-

physics runs, b) LW cloud radiative effect for double-moment microphysics runs, c) SW cloud radiative effect

for single-moment microphysics runs, d) SW cloud radiative effect for double-moment microphysics runs, e) net

cloud radiative effect for single-moment microphysics runs, and f) net cloud radiative effect for double-moment

microphysics runs. Each panel shows runs varying in grid size, SST, and turbulence parameterization scheme.

265

266

267

268

269 19



Cloud Fraction
0 .1 .2 .3 .4 .5

Te
m

pe
ra

tu
re

 (K
)

175

200

225

250

275

300

NOSHOC 1M 301 K

16 km
8 km
4 km
2 km
1 km
500 m

Cloud Fraction
0 .1 .2 .3 .4 .5

Te
m

pe
ra

tu
re

 (K
)

175

200

225

250

275

300

NOSHOC 2M 301 K

Cloud Fraction
0 .1 .2 .3 .4 .5

Te
m

pe
ra

tu
re

 (K
)

175

200

225

250

275

300

NOSHOC 1M 305 K

Cloud Fraction
0 .1 .2 .3 .4 .5

Te
m

pe
ra

tu
re

 (K
)

175

200

225

250

275

300

NOSHOC 2M 305 K
Cloud Fraction
0 .1 .2 .3 .4 .5

Te
m

pe
ra

tu
re

 (K
)

175

200

225

250

275

300

SHOC 1M 301 K

16 km
8 km
4 km
2 km
1 km

Cloud Fraction
0 .1 .2 .3 .4 .5

Te
m

pe
ra

tu
re

 (K
)

175

200

225

250

275

300

SHOC 2M 301 K

Cloud Fraction
0 .1 .2 .3 .4 .5

Te
m

pe
ra

tu
re

 (K
)

175

200

225

250

275

300

SHOC 1M 305 K

Cloud Fraction
0 .1 .2 .3 .4 .5

Te
m

pe
ra

tu
re

 (K
)

175

200

225

250

275

300

SHOC 2M 305 K

(a) (b) (c) (d)

(e) (f) (g) (h)

Monday, August 1, 16

FIG. 4. RCE simulation 25-day averaged values of cloud fraction as a function of temperature. Panels separate

runs based on 301 K SST (a,b,c,d) vs 305 K SST (e,f,g,h), NOSHOC (a,b,e,f) vs SHOC (c,d,g,h), and single-

moment (a,c,e,g) vs double-moment (b,d,f,h) microphysics.
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FIG. 5. RCE 25-day averaged 1-km single-moment NOSHOC 301K simulation cloud radiative kernel derived:

a) cloud fraction, b) net cloud forcing, c) LW cloud forcing, and d) -1 * SW cloud forcing. Colorbars for a, c,

and d are logarithmic.
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FIG. 6. Vertical profiles of 25-day averaged cloud radiative kernel derived: a) cloud fraction feedback, b) net

cloud feedback, c) LW cloud feedback, and d) -1 * SW cloud feedback. Y-axis points are layer means of the

pressures in Figure 9.
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