

Final Report 2013 Uinta Basin Winter Ozone Study

Prepared for: Brock LeBaron Utah Division of Air Quality 1950 West 150 North Salt Lake City, UT 84116

Edited by: Till Stoeckenius ENVIRON International Corporation and Dennis McNally Alpine Geophysics

ENVIRON International Corporation 773 San Marin Drive, Suite 2115 Novato, California, 94998 www.environcorp.com P-415-899-0700 F-415-899-0707

This page left intentionally blank.

CONTENTS

EXECUTIVE SUMMARYES-1				
1.0		PREFA	CE, CONTRIBUTORS AND ACKNOWLEDGEMENTS	1-1
	1.1	Prefa	ce	1-1
	1.2	Contr	ibutors	1-1
	1.3	Ackno	owledgements: Funding Agencies	1-2
2.0				
2.0				
			duction	
			A: Physical Characteristics and Meteorology	
	2.3	Part B	3: Atmospheric Chemistry of Ozone Formation	2-22
	2.4	Part C	C: Sources of Ozone Precursor Emissions	2-30
	2.5	Part D	D: Mitigation Strategies	2-36
	2.6	Part E	: Additional Information Needs and Modeling Issues	2-39
	2.7	Refer	ences	2-54
3.0			BUTED MEASUREMENTS OF AIR QUALITY AND METEOROLOGY	3-1
0.0			al, Seasonal, and Inter-annual Aspects of Wintertime Ozone	
		3.1.1	Introduction	
		3.1.2	Methods	
		3.1.2	Results and Discussion	
		3.1.4	Summary	
		3.1.5	Acknowledgements	
			rvations and Numerical Modeling of the Atmospheric Boundary Layer	
			Uintah Basin	3-35
		3.2.1	Introduction	3-35
		3.2.2	Methods	3-36
		3.2.3	Results and Discussion	3-40
		3.2.4	Summary	3-47
	3.3	Use o	f the CALMET Diagnostic Model to Simulate Winter Inversions	3-48
		3.3.1	Introduction	3-48
		3.3.2	Methods	3-48
		3.3.3	Results and Discussion	3-50
		3.3.4	Acknowledgements	

	3.4	Refere	ences	
4.0)	ANALY	SIS OF AIRCRAFT OBSERVATIONS4-1	
	4.1	Introd	luction and Methodology4-1	
	4.2	Spatia	Il Distribution of CH4, CO, CO2, and NO24-3	
	4.3	Spatia	I Distribution of Ozone and Relationship to Other Constituents)
		4.3.1	Distribution of Ozone over the Uinta Basin4-10)
		4.3.2	Relationship of Ozone to Other Constituents Measured on the	
			Aircraft4-11	
	4.4	Vertic	al Distribution of Ozone and Other Constituents4-15	
		4.4.1	Mixing within the Inversion Layer4-15	
		4.4.2	Ozone Vertical Structure]
		4.4.3	Evidence of Bonanza Power Plant Plume in Vertical Profiles	
	4.5	Flask	Samples from Aircraft	
		4.5.1	Comparison of Flask Sample Measurements in 2013 and 2012	
	4.6	Concl	usions	
	4.7	Refere	ences	,
5.0)	INTEN	SIVE CHEMICAL MEASUREMENTS AT HORSE POOL	
	5.1	Introd	luction and Background5-1	
			onfiguration and Experimental Approach5-1	
		5.2.1	NO/ NO ₂ / NO _y /O ₃ /N O ₃ /N ₂ O ₅ by Cavity Ring-Down Spectroscopy	
		5.2.2	O_3 and Winds by Lidar	
		5.2.3	CH ₄ , CO ₂ , H ₂ S by Integrated Cavity Output Spectroscopy	
		5.2.4	SO ₂ by UV Fluorescence	
		5.2.5	Acyl Peroxynitrates/Nitryl Chloride5-5	,
		5.2.6	VOCs by PTRMS5-5	
		5.2.7	C ₂ -C ₁₀ HCs by GC-FID	,
		5.2.8	Carbonyls Measured by DNPH Cartridges5-6	1
		5.2.9	Acids by NI-PT-CIMS5-7	
		5.2.10	Aerosol Particle and Snow Measurements5-8	,
		5.2.11	Ammonia Measurements5-9	,
		5.2.12	Mobile Lab Measurements from 20125-10	ł
		5.2.13	Meteorological Measurements5-11	
	5.3	Result	ts and Discussion5-11	
		5.3.1	Ozone and Odd-Nitrogen Species	

	5.	3.2	VOCs by GC-FID and PTRMS5-13
	5.	3.3	Formaldehyde5-14
	5.	3.4	Comparison of PTR-TOF-MS data and PTR-MS results5-15
	5.	3.5	Carbonyls measured by DNPH Cartridges5-15
	5.	3.6	PANs and Nitryl Chloride5-16
	5.	3.7	Acids by NI-PT-CIMS5-18
	5.	3.8	Radical Source Calculations5-22
	5.	3.9	Lidar Measurements5-24
	5.	3.10	Ammonia Measurements5-31
	5.	3.11	Aerosol Particle and Snow Measurements5-32
	5.	3.12	Meteorological Measurements5-33
	5.	3.13	Further Analysis of the 2012 Mobile Lab VOC Measurements
	5.4 R	Refere	ences
6.0	BA	ALLOO	ON-BORNE VERTICAL PROFILES OF OZONE, METHANE, NON-
			ANE HYDROCARBONS, NITROGEN OXIDES AND METEOROLOGICAL
	P/	ARAN	1ETERS
	6.1 C	Object	tive6-1
	6.2 E	xperi	mental Methods and Instrumentation6-1
	6.	2.1	Study Site and Duration6-1
	6.	2.2	Experimental Set-Up6-1
	6.	2.3	Instrumentation and Procedures6-3
	6.3 R	Result	s6-4
	6.	3.1	Ozone
	6.	3.2	Methane
	6.	3.3	Nitrogen Oxides6-9
	6.	3.4	Non-Methane Hydrocarbons6-11
	6.	3.5	Snowpack Air Ozone and NMHC Measurements
	6.	3.6	Meteorological Parameters6-17
	6.4 R	Refere	ences
7.0	0.		DEPOSITION VELOCITY DURING SNOW-COVERED AND NON-
7.0			
			COVERED PERIODS BY EDDY COVARIANCE
	SN	wow-	
	SN 7.1 C	NOW - Object	COVERED PERIODS BY EDDY COVARIANCE
	SN 7.1 C 7.2 E	NOW - Dbject Experi	COVERED PERIODS BY EDDY COVARIANCE

2.0			Basin Emissions Inventory	
9.0)	FMISS	ION INVENTORY DEVELOPMENT ACTIVITIES	9_1
	8.7	Refere	ences	8-48
	8.6	Ackno	owledgements	8-48
	8.5	Outre	each and Education in 2012:	8-46
	8.4	Concl	usions	8-45
		8.3.4	Physical Boundaries to Ozone Production and Precursors in the Uinta Basin	
		8.3.3	Tunable Optical Profiler for Aerosol and Ozone (TOPAZ) Lidar Measurements from Horsepool	
		8.3.2	Horsepool Tethersonde Measurements of the Bonanza Power Plant Plume	8-39
		8.3.1	Aircraft Measurements in the Bonanza Power Plant Plume	8-37
	8.3		ne Bonanza Power Plant Contribute to Ozone Precursors in Winter ?	8-37
		8.2.7	Contours of Two Ozone Production Events and the Intervening Cleanout.	
		8.2.6	Ozone Mixing Out of the Boundary Layer	
		8.2.5	Contour Plots of Ozone Structure during Ozone Production and Cleanout Events	8-32
		8.2.4	Mobile Surface Ozone Measurements	8-28
		8.2.3	Free Flying Ozonesonde Profiles	
		8.2.2	Diurnal Ozone Regression and Production during an Ozone Event	
		8.2.1	Surface and Tethersonde Measurements at Three Sites	
	8.2		Basin 2013 Surface Ozone Concentrations	
		8.1.2	Ozonesonde Instruments Tethered Ozonesonde (Tethersonde) Measurements	
		8.1.1 8.1.2	Ozonesonde Measurements in the Uinta Basin	
	8.1		ductions	
0.0		UINTA	BASIN, WINTER 2013	
8.0			RED OZONESONDE AND SURFACE OZONE MEASUREMENTS IN THE	
	7.4	_	ences	
		7.3.1	Snow-Covered Period Snow Free Period	
	7.3	Result	ts and Discussion	
	7 2	Doculi	ts and Discussion	7 2

	9.1.1	Introduction	9-1
	9.1.2	WRAP Phase III – the Baseline Oil and Gas Inventory	9-1
	9.1.3	Utah Division of Air Quality Oil and Gas Inventory for 2011	9-2
	9.1.4	BLM Utah Air Resource Management Strategy (ARMS)	9-5
	9.1.5	Inventory Improvement Projects Scheduled for 2014	9-6
9.2	2 Wint	tertime Emissions of Hydrocarbons from Produced Water Evaporation	
	Facil	ities	9-7
	9.2.1	Introduction	9-7
	9.2.2	Methods	9-9
	9.2.3	Results and Discussion	9-12
	9.2.4	Summary	9-17
	9.2.5	Acknowledgements	9-17
	9.2.6	References	9-17
10.0		ERICAL MODELING OF A THERMAL INVERSION IN THE UINTA BASIN,	10.1
		l, JANUARY 26-30 2013	
10	.1Refe	rences	
	-		
TABLE	-	LIPOS 2012 Study Components, associated research groups and the	
lable.	2-1.	UBOS 2013 Study Components, associated research groups and the section of this report in which the final report(s) for the Study	
		Component can be found.	2-4
Table	2-2.	UDAQ 2011 Emissions Inventory (tons/year) based on the Utah NEI	
		submittal and updated WRAP Phase III inventory (Source: Sec. 9, Table	
		9-2)	2-33
Table	2 1	Air quality monitoring stations that operated during winter 2012-13	2 7
Table		Statistics for 8-hour average ozone concentrations at sites around the	
T G D T C S		Uintah Basin and at select sites in Utah and the intermountain West	
		from November 2012 through March 2013.	3-5
Table	3-3.	Pearson correlation coefficients (r) for relationships between ozone	
		and spatial parameters. "N.S." Indicates that the correlation was not	
Table	2 4	significant (α = 0.05) NMHC concentrations and MIR for six sites in the Uintah Basin on 6	3-11
Table	5-4.	February	3-17
Table	3-5.	Pearson correlations (r) for average NMHC concentrations for 1-8	
		February at the six sites shown in Table 3-4. "N.S." Indicates the	
		correlation was not significant (α = 0.10)	3-18
Table	3-6.	Pearson correlations (r) of average NO_x during different periods with	
		ozone and spatial metrics. "N.S." Indicates that the correlation was	2 2 5
		not significant (α = 0.10)	

Table 3-7.	Ozone summary statistics for five sites in the Uintah Basin over five calendar years. The Vernal, Roosevelt, and Rangely sites are regulatory; Ouray and Red Wash are not. All values shown were
Table 3-8.	calculated from daily maximum 8-hour average concentrations
Table 3-9.	Occurrence of low clouds in MODIS using AQUA satellite imagery data retrieved at mid-afternoon during UBWOS
Table 3-10.	Stations from which data were used in the CALMET model
Table 3-11.	Vertical layers utilized in the CALMET model
Table 3-12.	Slope, R ² value, and percent deviation for the relationship between
	measured and modeled wind speed, wind direction, and temperature
	at the Dragon Road and Sand Wash sites. Percent deviation rows show
	values \pm 95% confidence intervals
Table 5-1.	Chemical measurements made during the 2013 Horse Pool Intensive
-	Study
Table 5-2.	Meteorological measurements made during the 2013 Horse Pool Intensive Study
Table 5-3.	High Resolution Doppler Lidar technical specifications
Table 5-4.	AMoN ambient ammonia concentrations from areas near the Uinta
	Basin (NADP, 2013b)
Table 6-1.	Average values for C2-C5 alkanes observed in 2012 and 2013 in
	comparison to regional background for 40°N in February as
	determined by the NOAA-INSTAAR Global Flask Network
Table 8-1.	ECC (electrochemical concentration cell) Ozonesonde
Table 8-2.	Uinta Basin primary tethered ozonesonde site locations, number of
	profiles measured and maximum ozone mixing ratios measured during
	Jan and Feb, 2012 and 2013
Table 9-1.	Production counts for oil, natural gas, produced water, gas well
	condensate, producing wells, and spuds for the years 2006 and 2011.
	(Harper ⁴)
Table 9-2.	UDAQ 2011 Emissions Inventory based on the Utah NEI submittal and
	updated WRAP Phase III inventory
Table 9-3.	Average concentrations of select organic compounds in, and chemical
	properties of, three produced water surface types encountered during
Table 9-4.	the winter 2012-13 sampling season. N.D. means not detected
1 aure 3-4.	water facilities in the Uinta Basin, categorized by pond surface type.
	TNMHC is total nonmethane hydrocarbons and is the sum of alkanes,
	alkenes, and aromatics

Table 9-5.	Wintertime produced water emissions in the Uinta Basin compared to to total anthropogenic emissions from all sources (Table 9-2). TNMHC is
	total nonmethane hydrocarbons and is the sum of alkanes, alkenes,
	and aromatics9-16
FIGURES	
Figure 2-1.	Uinta Basin and surrounding region2-1
Figure 2-2.	Oil and gas well sites in Utah as of 20102-2
Figure 2-3.	Comparison of maximum daily 8-hr average ozone mixing ratio
	(MDA8) in ppb (blue), smoothed temperature (green) and wind speed
	(orange), and daily snow depth (black dots) from the EPA monitoring
	site at Ouray, Uinta Basin for January – March: 2012 (top) and 2013
	(bottom); horizontal blue line represents 75 ppb ozone; horizontal
	green line represents 0 deg. C (Section 8)2-9
Figure 2-4.	Recent annual drilling and production activity trend in the Uinta Basin
	relative to 2009 (note 2013 spud counts [indicating number of wells
	where drilling was started] are extrapolated based on January –
	October data; 2013 production statistics are extrapolated based on
	January – June data; all data from the Utah Dept. of Natural Resources
	http://oilgas.ogm.utah.gov)
Figure 2-5.	Monthly maximum 8-hour average ozone concentrations during the
	winter ozone season at monitoring sites in the Upper Green River
	Basin of southwestern Wyoming2-13
Figure 2-6.	Daily maximum 8-hour average ozone concentrations at locations
	outside of the Uinta Basin and the maximum concentration over sites
	within the Basin during each January – March 2013 ozone episode2-15
Figure 2-7.	Uinta and Upper Green River basins2-18
Figure 2-8.	Annual oil and gas production in the Uinta Basin (Duchesne and Uintah
	counties; Utah DOGM, 2013) and the Upper Green River Basin
	(Sublette County; WOGCC, 2013)
Figure 2-9.	Contour plot of ozone concentrations above the Ouray Wildlife Refuge
	January 24 - February 7 based on thethersonde data (see Section 8)
Figure 2-10.	Mean mixing ratios collected during 15 January – 29 February, 2012 at
	Horsepool and during May – June 2010 at Pasadena, CA (Source:
	2012SR)
Figure 2-11.	Fractional increase in all measured VOCs at Horsepool from 2012 to
-	2013 (see Section 5)2-25
Figure 2-12.	Iso-pentane to n-pentane ratios from data collected during 15 January
	– 29 February 2012 at Horsepool, during 21 – 25 February 2011 at Red
	Wash, during 2011 in Weld County, CO, and during May-June 2010 in
	Pasadena, CA (source: 2012SR)2-25
Figure 2-13.	Diurnal variations of a species that is apparently HONO in 2012 and
	2013 at Horsepool (Source: Sec. 5)

Figure 2-14.	Summaries of the radical sources found during (a) CalNex2010, (b) UBOS 2012, and (c) UBOS 2013. Note that the CalNex and UBOS 2012 results are on the same scale, HONO (HCHO) is shown in light blue (black) in (b) and (c) but in medium blue and gray (yellow) in (a) and the areas of the pie charts are scaled to the total of the radical sources
	(Source: Sec. 5)
Figure 2-15.	Locations of oil and gas related emissions sources in the Uinta Basin (the location of the Bonanza power plant is also shown)
	Summary of emissions by source category. (Source: Sec. 9, Table 9-2)
Figure 2-18.	Profiles of 20-min wind speed and direction at Horsepool for 0000- 1200 UTC on 3 February 2012, showing strong northeasterly flow at 500 m above ground, extending down to the surface (arrows). Wind barbs indicate direction from which winds were blowing, and color coding of barbs indicates wind speed as shown on color bar. Horizontal axis is time (UTC, which is 7 hr ahead of MST), and vertical axis is height above ground (m)
Figure 2-19.	Profiles of 20-min wind speed and direction at Horsepool for 1200 UTC, 4 Feb to 0000 UTC, 5 Feb 2012, showing diurnal cycle of winds below 500 m. Dotted black curve is clear-sky solar flux, indicating time of day. Wind barbs and axes as in Figure 2-18
Figure 2-20.	Mean day and night wind vectors at 14 meteorological stations around the Uinta Basin in February 2012. (Source: SR2012)
Figure 2-21.	Daily maximum ozone concentrations and afternoon composite wind vectors from surface sites on 28 January 2013 during a stormy period between inversion episodes. Arrows indicate wind direction. The black line on the ozone color scale indicates 75 ppb2-45
Figure 2-22.	Daily maximum ozone concentrations and afternoon composite wind vectors from surface sites on 6 February 2013 during an inversion episode
Figure 2-23.	Daily maximum ozone concentrations and afternoon composite wind vectors from surface sites on 8 February 2013
Figure 2-24.	Ceilometer aerosol backscatter on 24 January 2013 at Roosevelt, UT. Higher (lower) backscatter implying higher (lower) aerosol concentration denoted by warm (cool) colors
Figure 2-25.	Contour plot showing the complete record of ozone measurements acquired from the ECC tethersondes launched by the CU-INSTAAR group at Horsepool between 26 January and 18 February, 2013

Figure 2-26.	Observed (solid) and simulated (dash) temperature vertical profiles at
	Ouray (blue) and Horsepool (red) at 15 MST on Jan 26, 2013
Figure 3-1.	Time series of 8-hour average ozone concentrations at all monitoring
	sites in the Uintah Basin, winter 2012-13. EPA NAAQS of 75 ppb is
	shown as a red dashed line
Figure 3-2.	Time series of average snow depth from five stations in the Uintah
	Basin, pseudo-lapse rate for the Basin, 8-hour average ozone at Ouray,
	and average total daytime UV-A and UV-B radiation (average during
	daytime hours of the sum of upwelling and downwelling UV-A and UV-
	B) at Horsepool, winter 2012-13. The pseudo-lapse rate was derived
	from the change in temperature with elevation at surface
	meteorological stations in the Basin. The dashed black line indicates a
	lapse rate of zero and an ozone concentration of 75 ppb. A more
	negative lapse rate indicates a stronger inversion
Figure 3-3.	Fourth-highest daily maximum 8-hour average ozone concentrations
	for all sites in the Uintah Basin, winter 2012-13. The black line on the
	color scale indicates 75 ppb3-8
Figure 3-4.	Maximum 8-hour average ozone concentrations for all sites in the
	Uintah Basin, 26 January
Figure 3-5.	Maximum 8-hour average ozone concentrations for all sites in the
	Uintah Basin, 1 March
Figure 3-6.	Relationship between fourth highest daily maximum 8-hr average
	ozone concentration for winter 2012-13 and average elevation within
	10 km of a monitoring station (in blue) and number of producing oil
	and gas wells within 10 km of a monitoring station (in red). Linear
	regression lines and Pearson R ² values are also shown
Figure 3-7.	Producing oil and gas wells in and around the Uintah Basin. Wells
	were considered "producing" if they reported oil or gas production
	during February 2013
Figure 3-8.	Sum of all alkanes measured on 1 February (the start of an inversion
	episode) at six sites around the Uintah Basin
Figure 3-9.	Sum of all alkanes measured on 6 February (day of highest ozone
	during the inversion episode noted in previous figure) at six sites
	around the Uintah Basin3-14
Figure 3-10.	Sum of all aromatics measured on 6 February (day of highest ozone
	during an inversion episode) at six sites around the Uintah Basin
Figure 3-11.	Sum of all alkenes measured on 6 February (day of highest ozone
	during an inversion episode) at six sites around the Uintah Basin
Figure 3-12.	Methanol measured on 6 February (day of highest ozone during an
	inversion episode) at five sites around the Uintah Basin
Figure 3-13.	Relationship between 1-8 February average total NMHC concentration
	and average elevation within 25 km of monitoring stations (in blue)
	and number of producing oil and gas wells within 15 km of monitoring

	stations (in red). Linear regression lines and Pearson R ² values are also shown.	3-18
Figure 3-14.	Relationship between 1-8 February average total NMHC concentration and fourth highest 8-hour ozone concentration at study sites. A linear regression line and Pearson R ² value is also shown	3-19
Figure 3-15.	Average NO_x at ten sites during an inversion episode that occurred 20- 26 January.	
Figure 3-16.	Average NO_x at twelve sites during an inversion episode that occurred 30 January through 5 February. NO_x concentrations shown for Wells	
Figure 3-17.	Draw and Seven Sisters are derived from passive Radiello samplers Average NO_x at ten sites during an inversion episode that occurred 1-3 March	
Figure 3-18.	Comparison of NO measured by a photolytic NO _x analyzer (USU) to a molybdenum converter-based NO _x analyzer (CU). The linear regression curve, R^2 value, and slope of the relationship are also	
Figure 3-19.	shown Comparison of NO _x measured by a photolytic NO _x analyzer (USU) with a molybdenum converter-based NO _x analyzer (CU). The linear regression curve, R^2 value, and slope of the relationship are also	
Figure 3-20.	shown Comparison of NO _v (USU) with NO _x measured by a molybdenum	3-22
	converter-based NO _x analyzer (CU). The linear regression curve, R^2 value, and slope of the relationship are also shown.	3-23
Figure 3-21.	Diurnal change in NO _x concentrations at 10 sites around the Uintah Basin during the 20-26 January inversion episode	
Figure 3-22.	Relationship between 31 January through 5 February molybdenum converter-based NO_x concentration (contains some NO_y) and fourth highest 8-hour ozone concentration at 12 study sites. A linear	
Figure 3 -3.	regression line and Pearson R ² value are also shown Daily maximum ozone concentrations and wind vectors from surface sites on 28 January during a stormy period between inversion episodes. Arrows indicate wind direction. The black line on the ozone color scale indicates 75 ppb	
Figure 3-24.	Daily maximum ozone concentrations and wind vectors from surface	
Figure 3-25.	sites on 6 February during an inversion episode Daily maximum ozone concentrations and wind vectors from surface sites on 8 February	
Figure 3-26.	Diurnal average concentrations of ozone and precursors at Horsepool, 20-26 January.	
Figure 3-27.	Diurnal average concentrations of ozone and precursors at Horsepool, 4-6 February	
Figure 3-28.	Diurnal average concentrations of ozone and precursors at Horsepool, 1-3 March	

March 2014

Figure 3-29.	Slope of the linear regression relationship between Ox and NO _z at Horsepool, January-March. Only days with maximum ozone greater
Eigung 2.20	than 90 ppb are shown
Figure 3-30.	Ratio of ozone to NO _y at Horsepool, January-March. Only days with maximum ozone greater than 90 ppb are shown
Figure 3-31.	Time series of daily maximum 8-hour average ozone concentration at
0	five sites in the Uintah Basin, July 2009-March 2013. The red dashed
	line shows 75 ppb, the EPA NAAQS for ozone
Figure 3-32.	Location of key targeted University of Utah meteorological
	instrumentation sites and mobile transect route. All Mesowest
	stations available during the UBWOS are shown by black dots
Figure 3-33.	Instruments used during targeted meteorological observations in the
	Uintah Basin. (A) Graw DFM-06 radiosondes, (b), Viasala CL-31
	ceilometer, (c) Meteorological and ozone mobile unit
Figure 3-34.	Ceilometer aerosol backscatter on 24 January 2013 at Roosevelt, UT.
	Higher backscatter denoted by warm colors and lower aerosol
Figure 2.25	concentrations indicated by cool colors
Figure 3-35.	Aerosol backscatter between 19 January 2013 and 17 February 2013
	at Roosevelt (top), depth of the dominant aerosol layer (middle) and median backscatter values for region below the calculated aerosol
	depth (bottom)
Figure 3-36	Skew-T plot showing temperature, dew point temperature, and wind
ligare 5 50.	speed and direction for 2 and 4 February 2013 at 1800 UTC
Figure 3-37.	775 hPa level wind speeds (shaded and barbs) and direction for WRF
	numerical simulations during the 30 January-10 February 2013
	persistent cold air pool in the Uintah Basin
Figure 3-38.	Afternoon MODIS satellite imagery showing snow (blue) and clouds
C	(white) during 1, 2, and 7 February 2013
Figure 3-39.	3D elevation map of the CALMET modeling domain. Approximate
	locations of Vernal, Price, and Grand Junction are shown
Figure 3-40.	Ground-level (10 m) wind vectors at 3:00, 6 February
Figure 3-41.	Ground-level (10 m) wind vectors at 9:00, 6 February
-	Ground-level (10 m) wind vectors at 15:00, 6 February
-	Ground-level (10 m) wind vectors at 21:00, 6 February
-	Surface temperature contour map for 10:00, 7 February
Figure 3-45.	Measured and modeled vertical temperature profile for 12:00 to
	15:00, 6 February at Pariette Draw3-57
Figure 4-1.	Photographs of the Cessna 210 aircraft that sampled over the Uinta
	Basin in February 2013. (a) Three inlets and two temperature and
	humidity probes were installed under the starboard wing. (b) View of
	the snow covered Uinta Basin from the aircraft4-6
Figure 4-2.	Flight tracks over the Uinta Basin on February 2, 2013 colored by O_3
	mole fraction in parts per billion (ppb). Data from all altitudes is shown

Figure 4-3.	overlain on topography of the Uinta Basin. The 1600 m elevation is at the boundary between the purple and turquoise color band4-6 Map of the flight track on February 2, 2013 over the Uinta Basin colored by (a,c) CH ₄ and (b,d) CO. Figures (a) and (b) show the full track, while (c) and (d) show the flight track portions below 1650 masl only. Locations of oil and gas wells are shown as purple and gray dots,
Figure 4-4.	 respectively
Figure 4-5.	through the region
Figure 4-6.	Flight tracks from (a) February 4 and (b) February 18, 2012 showing elevated CH ₄ over the gas wells (gray dots) during low-wind conditions, in the same region that CH4 was enhanced in the 2013 flights, with lower enhancements in the western portion of the basin over the oil wells (purple dots)
Figure 4-7.	Relationship between NO ₂ and CO measurements from the aircraft for different quadrants in the basin (date of flight indicated in each panel, YYYYMMDD). NO ₂ is more enhanced in the SE, while CO is enhanced in the SW
Figure 4-8.	Relationship between NO ₂ and CH ₄ measurements from the aircraft for different quadrants in the basin (date of flight indicated in each panel, YYYYMMDD). NO ₂ and CH ₄ are both enhanced in the SE quadrant (red points), but not always well-correlated4-13
Figure 4-9.	Map of flight tracks below 1650 masl on January 31, February 1, 2, 4, 5 and 6, 2013 over the Uinta Basin colored by O_3 mixing ratio in ppb. The flight date (YYYMMDD) is indicated in the title of each panel. Oil wells are indicated by purple points, gas wells by dark gray points
Figure 4-10.	Relationship between O_3 and CH_4 measurements from the aircraft for different quadrants in the basin (date of flight indicated in each panel, YYYYMMDD). CH_4 is highest in the SE quadrant (red points), but is not well-correlated with O_3 for CH_4 above ~8 ppm

Figure 4-11.	Relationship between O_3 and CO measurements from the aircraft for
	different quadrants in the basin (date of flight indicated in each panel,
	YYYYMMDD). CO is highest in the SW quadrant (green points), but is
	not well-correlated with O_3 for CO above 400 ppb
Figure 4-12.	Relationship between O_3 and NO_2 measurements from the aircraft for
_	different quadrants in the basin (date of flight indicated in each panel,
	YYYYMMDD). NO ₂ is consistently highest in the SE quadrant (red
	points), but is not well-correlated with ozone
Figure 4-13.	Profiles of constituents measured on the aircraft on January 31 in the
0	vicinity of the natural gas field and gas processing plants. Note the
	enhancements of all species beneath the temperature inversion
	observed at 1600 masl
Figure 4-14.	(a) Time series of flight on February 1, 2013, with the profiles
	highlighted. (b) Corresponding locations of the profiles in the Uinta
	Basin, shown along with the oil (purple) and gas (gray) well locations.
	The Bonanza Power Plant is located at the black triangle and
	Horsepool at the black dot
Figure 1-15	Four vertical profiles of CH_4 (black), CO (red), CO ₂ (blue), O ₃ (green),
11gule 4-15.	NO ₂ (purple), and temperature (gray dashed) on February 1, 2013.
	Profile times and locations are indicated in Figure 4 14
Eiguro 4 16	-
Figure 4-16.	
	highlighted. (b) Corresponding locations of the profiles in the Uinta
	Basin, shown along with the oil (purple) and gas (gray) well locations.
	The Bonanza Power Plant is located at the black triangle close to the
Figure 4 47	blue numeral 1. Profile 4 is located over the ground site in Horsepool
Figure 4-17.	Four vertical profiles of CH_4 (black), CO (red), CO ₂ (blue), O ₃ (green),
	NO2 (purple), and temperature (gray dashed) on February 2, 2013.
5 '	Profile times and locations are indicated in Figure 4 164-22
Figure 4-18.	
	highlighted. (b) Corresponding locations of the profiles, shown along
	with the oil (purple) and gas (gray) well locations. The Bonanza Power
	Plant is located at the black triangle. Profile 1 was conducted near the
	Horsepool site
Figure 4-19.	Four vertical profiles of CH_4 (black), CO (red), CO_2 (blue), O_3 (green),
	NO ₂ (purple), and temperature (gray dashed) from the flight on
	February 5, 2013. Profile times and locations are indicated in Figure 4
	18
Figure 4-20.	Photograph taken from the aircraft of the Bonanza Power Plant and its
	plume rising above the inversion layer on February 2, 2013
Figure 4-21.	Location of flask samples collected in 2012 (red) and 2013 (blue) over
	the Uinta Basin. Gas wells are indicated in light blue and oil wells in
	green
Figure 4-22.	Measurements of light hydrocarbons (first five panels) and CO
	(bottom right) plotted against CH ₄ mole fraction from air samples

	collected in flasks over the Uinta Basin in 2013 (blue, red, green or yellow based on quadrant) and 2012 (gray). All data from
	NOAA/GMD4-28
Figure 4-23.	·
	aircraft, January 31 - February 7, 2013, colored by quadrant (CH ₄ from
	NOAA/GMD and NMHC from CU INSTAAR)4-29
Figure 5-1.	A picture of the UBOS 2013 Horse Pool Intensive site facing North. The
	individual components are (A) sample tower with automated inlet, (B)
	NOAA/CSD nitrogen species trailer, (C) NOAA/CSD VOC trailer, (D)
	NOAA/PMEL aerosol and snow lab, (E) NOAA/CSD HRDLS trailer, (F)
	NOAA/CSD TOPAZ trailer. Photo credit, Scott Sandberg5-42
Figure 5-2.	Time-height cross section of wind speed and direction on 30 January
	for 0000-1200 UTC (29/1700-30/0500 MST), using 20-min vertical
	profiles from HRDL conical scans. Wind barbs point toward direction
	from which winds were blowing, and color of barbs indicates wind
	speeds (m s ⁻¹) as shown in color bar at right. Dashed line (left side of
	figure) indicates relative solar insolation, declining in late afternoon5-43
Figure 5-3.	Truck-mounted TOPAZ ozone lidar with roof-top, two-axis scanner
Figure 5-4.	Deployed Ogawa passive sampler without and with rain/wind cap5-44
Figure 5-5.	Times series of O_3 measured at the Horse Pool site by the CaRDS
	instrument during the UBOS 2013 campaign5-44
Figure 5-6.	Diurnal averages of O $_3$ during the campaigns in 2012 (blue) and 2013
	(red). The average daylight period is shown in yellow5-45
Figure 5-7.	Comparison of O ₃ distributions measured in 2012 (blue) versus 2013 (red)
Figure 5-8a-o	. The distributions of (a) total NO _y , (b) NO _x , and (c) the ratio NO _x / NO _y .
U	The UBOS 2012 data are in blue and the UBOS 2013 data are in red
Figure 5-9.	Diurnal plot of NO _x , NO _y and NO _x / NO _y measured during the 2012
U	campaign
Figure 5-10.	Diurnal plot of NO _x , NO _y and NO _x / NO _y measured during the 2013
C	campaign
Figure 5-11.	The average diurnal composition of NO _z measured during the UBOS
U	2012 campaign. NO _x is in black, NO _y is in red and the ratio NO _x / NO _y is
	in blue
Figure 5-12.	The average diurnal composition of NO _z measured during the UBOS
U	2013 campaign. NO _x is in black, NO _y is in red and the ratio NO _x / NO _y is
	in blue
Figure 5-13.	VOC composition by molar abundance (volume) (A) and mass (B), and
U	OH reactivity (C) measured during UBOS 2013.
Figure 5-14.	Propane measured as a function of inlet height during the periods of
2	height profiling
Figure 5.15.	Comparison between UBOS 2012 (black) and UBOS 2013 (red) of the
	absolute mixing ratios of compounds with the highest concentrations

-	The fractional increase from 2012 to 2013 of all measured VOCs5-52
Figure 5-17.	Ratios of iso-to n-butane, iso- to n-pentane, and benzene and i-butane
	to propane, for 2012 and 2013. The black symbols are for 2012 and
	the red symbols are for 2013, and the error bars are 1s of the
	measured data
Figure 5-18.	Time series of total OH reactivity of VOCs (red), methane (blue),
	carbon monoxide (yellow) and NO ₂ (grey)5-54
Figure 5-19.	The relationship between formaldehyde and methanol for both 2012
	(black) and 2013 (red)5-54
Figure 5-20.	Correlations of marker compounds to (a) Formaldehyde, and (b)
	Benzene
Figure 5-21.	Time series of PTR-TOF-MS (black) and PTR-MS (red) VOC
	measurements made during the UBOS 2013 intensive period. The top
	three measurements (acetone, acetaldehyde, and methyl ethyl ketone
	(MEK)) are photochemically produced secondary pollutants formed
	throughout an ozone event. Methanol (bottom panel) is more
	indicative of a local emitted primary pollutant
Figure 5-22.	Linear regression plots of the PTR-MS and PTR-TOF VOC data collected
	during the UBOS 2013 intensive period and shown in Figure 1. These
	measurement techniques show agreement to within 5% for all of the
	VOC species quantified by both instruments
Figure 5-23.	A comparison of PTR-TOF-MS, PTR-MS, and GC-FID measurement of
	benzene during the UBOS 2013 intensive period. The top two panels
	show linear regression fits of the PTR-TOF to GC-FID (left) and the PTR-
	TOF to PTR-MS (right) for the data shown in the time series provided
	in the bottom panel5-58
Figure 5-24.	Box-whisker plots carbonyl compounds as measured at Roosevelt and
	Vernal (Feb. 13-25, 2013). The "n" indicates the number of times a
	particular compound was identified (21 total samples from Roosevelt,
	14 total from Vernal)5-59
Figure 5-25.	Comparison of average ambient formaldehyde, acetaldehyde, and
	acetone from Roosevelt, Vernal, Horse Pool-NOAA (Feb. 13-25, 2013).
	The error bars represent the 95% confidence intervals
Figure 5-26.	Diurnal, time series plots for formaldehyde, acetaldehyde, and
-	acetone as measured at Roosevelt, Vernal and Horse Pool-NOAA (Feb.
	13-25, 2013)
Figure 5-27.	Distributions of PAN measurements for the two UBOS studies along
C	with 3 other ground-based studies5-62
Figure 5-28.	The correlation of PPN with PAN observed during the UBOS 2013
2	intensive
Figure 5-29.	The correlation of O_3 with PAN for UBOS 2012 (open black circles),
-	UBOS 2013 (red crosses), TexAQS 2000 (open blue squares) and
	CalNex 2010 (solid green circles)

Figure 5-30.	Distributions of Cl NO_2 measurements for the two UBOS studies along	
	with 2 other ground-based studies	. 5-65
Figure 5-31.	Gradients in Cl NO ₂ mixing ratio during the inlet profiling experiment.	
	The grey bands denote when the inlet was at the upper height (7.25	
	m)	
Figure 5-32.	Diurnal variations of HCl and HN O_3 in 2012 and 2013 at Horse Pool	. 5-67
Figure 5-33.	Comparison of the measured concentration of HN O ₃ , HONO, formic	
	acid and Pyruvic+butyric acid between 2012 and 2013 at Horse Pool	. 5-67
Figure 5-34.	Diurnal variations of HONO in 2012 and 2013 at Horse Pool	. 5-68
Figure 5-35.	Measured HONO during the period when the inlet height was	
	switching between 1m and 7.25 m (grey line). The blue line is the 1	
	minute average HONO, and the green and red points are the 20	
	minute averaged HONO measured while the inlet was up, or down,	
	respectively. The difference between the HONO measured with the	
	inlet down and the HONO measured with the inlet up interpolated	
	between measurements is shown in the open purple circles with one	
	standard deviation of the down measurement average shown as error	
	bars	.5-68
Figure 5-36.		
	eddy diffusivity, K_z , based on an average photolysis rate of 0.0016 sec-	
		. 5-69
Figure 5-37	Concentration profiles predicted for the range of K _z that corresponded	.5 05
liguic 5 57.	to gradients of ~0 to 15% as shown in Figure 5-36	5-70
Eiguro E 29	The concentration of nitrite in the top layer of snow, versus the	. 5-70
Figure 5-56.		E 71
Figure F 20	concentration of nitrate.	. 5-71
Figure 5-59.	The dependency of equilibrium gas phase HONO (HONO*) with pH	
	value and nitrite concentration in the snow. The contour lines are	
	calculated at 268 K (assuming the presence of a liquid layer), which is a	
	regular value for ambient temperature at noon time at Horse Pool	
	site. The circles in the graph represent the measured snow results	
	near Horse Pool site. The circles are color-coded with measurement	
	time	.5-72
Figure 5-40.	Diurnal variations of formic acid and pyruvic+butyric acid in 2012 and	
	2013 at Horse Pool.	. 5-72
Figure 5-41.	Summaries of the radical sources found during (a) CalNex2010, (b)	
	UBOS 2012, and (c) UBOS 2013. Note that the CalNex and UBOS 2012	
	results are on the same scale, and the areas of the pie charts are	
	scaled to the total of the radical sources.	.5-73
Figure 5-42.	Terrain contour map of Uinta Basin region with color scale adjusted to	
	emphasize the nature of the Basin topography. Color scale is adjusted	
	so that elevation of the Horse Pool site (HP: red arrow on map) falls	
	between purple and blue colors (red arrow on color bar)	. 5-74
Figure 5-43.	Time-height cross sections as in Figure 5-2, showing a 24-hr period on	
	15 Feb 2013. Dark arrows indicate predominant wind direction	. 5-75

Figure 5-44.	Temperature traces at the Horse Pool site at 2 and 18 m above ground on 30 January, showing temperatures 1-2° warmer at the lower level
	during the day (gold arrows)
Figure 5-45.	Tethered-balloon profiles of O_3 (left) and potential temperature θ
U	(right) at the Horse Pool site at 1409 MST (2109 UTC) on 14 February
Figure 5-46.	Tethered-balloon profiles of O ₃ (left) and potential temperature θ
0	(right), as in Figure 5-45, at the Horse Pool site (HP: green curves), the
	Fantasy Canyon site (FC: blue curves), and at the Ouray site (OU: red
	curves) at approximately 1620 MST (2320 UTC) on 5 February
Figure 5-47	Tethered-balloon profiles of O_3 (left) and potential temperature θ
	(right), as in Figure 5-45, at the Horse Pool site (HP: green curves), the
	Fantasy Canyon site (FC: blue curves), and at the Ouray site (OU: red
	curves) at approximately 1545 MST on 1 February (top panels)
	and 1620 MST on 5 February (bottom curves). Vertical exchange
	processes move O_3 higher into inversion layer as episode proceeds
	(gold arrows), but much variation is seen within days and from day to
	day
Figure 5-48.	24-hr, single-station trajectories starting at the Horse Pool site at
	~0000UTC (1700 MST) for 5 atmospheric levels between 0 and 300 m
	AGL for 30 January (top left), 31 January (top right), and 14 February
	(bottom)5-78
Figure 5-49.	Backward trajectories starting at the Horse Pool site at 0047 UTC on
	15 February (1747 MST, 14 February), when a marked O_3 deficit was
	observed over the site. The highest trajectory (gold) passed directly
	over the Bonanza Power Plant power plant (BNZ), whereas the lower
	profiles did not5-79
Figure 5-50.	Lidar ozone profiles observed at elevations angles of 2°, 10°, and 90°,
	projected vertically and blended together. The entire profile is shown
	on the lefthand plot and the middle and righthand plots show
	successive expansions of the profile. The data were taken on 7
	February 2012 during the first UBOS study5-79
Figure 5-51.	Normalized PDFs of all UBOS 2012 ozone lidar measurements for three
U	altitude ranges. Mean ozone values for the different altitude bins are
	indicated in the legend
Figure 5.52.	Overview of the TOPAZ ozone profile measurement from the UBOS
	2013 study. Ozone profiles are only shown up to 1000 m AGL to better
	depict the ozone structure in the lowest few hundred meters
Figure 5-53	TOPAZ ozone time-height cross section up to 600 m AGL on 17
inguic 5 55.	February 2013. HRDL lidar horizontal wind measurements (shown as
	colored wind barbs) and ozone observations from two in situ sensors
	(thick black and red lines) are overlaid. The dashed line indicates solar
	irradiance (arbitrary scale)5-82

Figure 5-54.	15-min ozone profiles grouped by ozone episode for every day of
	TOPAZ observations. The profiles were measured when BL ozone
	peaked in the afternoons
Figure 5-55.	TOPAZ time-height cross section of ozone from near the surface to
	600 m AGL for 17:16 – 19:31 MST on 14 February 2013. The colored
	line shaped like an inverted "V" represents the ozone measurements
	from the collocated tether sonde5-83
Figure 5-56.	Ambient ammonia concentrations at various sites within the Uinta
	Basin. The error bars represent the range of duplicate measurements
	at each site5-84
Figure 5-57.	Contour plot of ambient ammonia concentrations within the Uinta
	Basin overlaid onto a Google Earth map5-84
Figure 5-58.	National ammonium ion (NH ₄ +) concentrations for 2011 as observed
	by the National Trends Network (NADP, 2013a)5-85
Figure 5-59.	Estimated annual NH3 emissions for the two counties making up
	Utah's Uinta Basin (UDAQ, 2013.)5-85
Figure 5-60.	A comparison of the PM 2.5 aerosol mass concentrations between
	2012 and 20135-86
Figure 5-61.	Mass fractions of the primary sub micrometer aerosol components in
	2012 and 2013 (POM-green; (NH ₄)2SO ₄ -red; and NH ₄ N O ₃ -blue)5-87
Figure 5-62.	Aerosol number size distributions at ambient relative humidity in 2012
	(bottom) and 2013 (top) showing the larger mean diameter in 2013
Figure 5-63.	Inorganic and organic components in surface (0-3cm) snow measured
	within 1.3 km of Horse Pool in 2013. Nitrate and nitrite (not shown)
	concentrations increased in the surface snow with time. The snow fall
	on February 8 covered the surface snow and reduced the measurable
	inorganic ion concentrations
Figure 5-64.	Typical surface sensible heat fluxes at the Horse Pool meteorological
_	site during UBOS 20135-89
Figure 5-65.	Upwelling solar radiation measured at Horse Pool during UBOS 20135-90
	Heat fluxes measured at Horse Pool during UBOS 2013
-	Broadband solar albedo at Horse Pool during UBOS 2013
-	The downwelling (black) and upwelling (red) solar irradiances
0	measured at Horse Pool during the UBOS 2013 experiment
Figure 5-69.	An example track close to a gas well, color coded by methane (b),
0	methanol (c), toluene (d) and (e) NO_2 . The wind barbs indicate
	prevailing wind direction. The time series during this period is shown
	in (a)
Figure 5-70	The maximum mixing ratios of benzene, methanol and methane
	observed close to the sources in the Uinta Basin and in Rangely,
	Colorado in both (a) full scale and (b) small scale
Figure 5-71	Average mixing ratios of the VOCs; aromatics, cycloalkanes, methanol
inguic 5 / 1.	and methane) measured near emission sources in the Uinta Basin,
	averaged for each category of point sources. The error bars are the
	averaged for each category of point sources. The effor bars are the

	standard deviation. All concentrations were normalized to an average wind speed of 2 m/s
Figure 6-1.	Schematic of the CU-INSTAAR experimental setup during UBOS 20136-2
Figure 6-2.	Record of ECC sonde launches and balloon height6-3
Figure 6-3.	Comparison of ozone measured at 2 m height from the 2012 and 2013
	UBOS campaigns (note different y-axis scales)6-5
Figure 6-4.	Contour plot showing the complete record of ozone measurements
	acquired from the ECC tethersondes launched by the CU-INSTAAR
	group at Horsepool6-6
Figure 6-5.	Ozone vertical profiles from the ECC tethersonde for four days of the
	campaign, illustrating an unstable, relatively low ozone period
	(January 30 and 31) and a high ozone period during an inversion event
	(February 12 and 13) (please note the different x-axis scales of the
	graphs)6-7
Figure 6-6.	Time series of methane (purple) and ozone (black) comparing the
	2012 and 2013 campaigns
Figure 6-7.	Correlations of ozone and methane for 2013 (left) and 2012 (right)6-8
Figure 6-8.	Panel A: Diurnal average for methane comparing the 2012 (black) and
	2013 (red) campaigns. Panel B: Average (plus or minus one standard
	deviation) methane vertical distribution for the 2013 campaign6-9
Figure 6-9.	Time series of NO and NO _x from the 2 m tower comparing the 2012
	(black) and 2013 (red) campaigns6-10
Figure 6-10.	
	2012 (black) and 2013 (red) campaigns6-10
Figure 6-11.	Mean vertical distribution plus standard deviation of NO _x during the
	2013 campaign6-11
Figure 6-12.	Ethane (red) and propane (blue) time series from the 2 m tower
	overlaid with ozone (black) comparing the 2012 and 2013 campaigns6-11
Figure 6-13.	Left: Time series of benzene (orange) and toluene (purple) overlaid
	with ozone (black) for the 2013 campaign. Right: Linear correlation of
	benzene and ethane for 20136-12
Figure 6-14.	Statistics of the vertical distributions of ethane and propane
	comparing the 2012 (top) and 2013 (bottom) campaigns. Here, the
	square marker represents the mean value, the edges of the box
	represent the 25th and 75th percentiles, the line in the box represents
	the median value, and the "whiskers" represent the minimum and
	maximum values
Figure 6-15.	Examples of two days of ethane vertical profiles contrasting a day with
	relatively strong vertical mixing (February 12) with a day with a
	shallow boundary layer and minimal vertical mixing (February 2)
Figure 6-16.	Panel A: Time series of ozone measured from the 2 m tower (black)
	and from the snowpack inlet (red). Panel B: Time series of select

	NMHC ratios from the 2 m tower (black) and from the snowpack inlet (purple)
Figure 6-17.	Correlation plots for iso-butane:n-butane and iso-pentane:n-pentane
	broken up by inlet height6-16
Figure 6-18.	Plots of the iso-pentane:n-pentane ratio versus n-pentane and the iso-
	butane:n-butane ratio versus n-butane for all NMHC data divided by
Figure 6-19	inlet height
	Pressure record from the tethersonde vertical balloon profiles
Figure 7-1.	Albedo measured as an indicator of surface snow cover at the
	Horsepool site during the study period7-2
Figure 7-2.	Histogram of ozone deposition velocity calculations for the snow-
	covered period (early February) inclusive of both nighttime and
	daytime data. Mean and median ozone deposition velocity were - 0.002 and 0.0 cm s ⁻¹ , respectively, with the 2- σ window extending
	from $-0.063 - 0.059$ cm s ⁻¹
Figure 7-3.	Histogram of ozone deposition velocity calculations for the non-snow-
0	covered period (late March) inclusive of nighttime and daytime data.
	Mean and median ozone deposition velocities were -0.006 and 0.002
	cm s ⁻¹ , respectively, with the 2- σ window extending from -0.066 –
	0.054 cm s ⁻¹
Figure 8-1.	The presence of snow throughout the Uinta Basin in 2013 was a
	controlling factor in the production of ozone in 2013 as discussed in
	various sections of this report
Figure 8-2.	An automated, portable NOAA tethered ozonesonde system at the
	Fantasy Canyon site. The tethered ozonesonde system was set up and
	in operation within an hour of arriving on site. The complete system is
	battery operated and can be left alone to conduct profiles to a pre-set
	altitudes, then return to the surface before repeating the cycle. The
	system will run for ~4 hours before sonde batteries require changing. Photo: Patrick Cullis, NOAA/CIRES, February 2013
Figure 8-3.	A portable NOAA automated ozonesonde tether installation in
inguie 0 5.	operation in the late evening at the Ouray Wildlife Refuge site. This
	system was operated remotely from within the staff house that also
	served as an ozonesonde preparation and calibration center. Photo:
	Patrick Cullis, NOAA/CIRES, February 2013
Figure 8-4.	TEI UV photometric surface ozone analyzer operated full time at the
	Ouray Wildlife Refuge during the 2012 and 2013 campaigns. An
	additional unit was operated at the Blue Feather pipe yard in 2013
Figure 8-5.	TEI versus ozonesonde measurements prior to each tethered
	ozonesonde profile ascent at the Ouray Wildlife Refuge site in 2013. The TEI reads about 3% lower than the ozonesondes. This is not

 Figure 8-6. Map of the Uinta Basin with locations of the oil (red) and gas wells (blue) and the tethersonde sites in 2012 (Ouray, Horsepool, Roosevelt and Jensen) and 2013 (Ouray, Horsepool and Fantasy Canyon). Surface ozone monitors were operated at Blue Feather and Ouray in 2013. There is an EPA ozone monitor at Red Wash that the mobile ozone van 	}-8
and Jensen) and 2013 (Ouray, Horsepool and Fantasy Canyon). Surface ozone monitors were operated at Blue Feather and Ouray in 2013.	}-8
ozone monitors were operated at Blue Feather and Ouray in 2013.	3-8
	3-8
There is an EPA ozone monitor at Red Wash that the mobile ozone van	3-8
	3-8
passed regularly.	
Figure 8-7. Summary plot of the 2012 average ozone mixing ratios and standard	
deviations measured at all sites during morning (between sunrise and	
local noon, in blue) and afternoon (noon to sunset, red). Note the	
absence of any large ozone production in events in 2012 compared to	
the range of the ozone measured in 2013 presented in Figure 8-8. The	
data in Figures 8-7 and 8-8 are plotted on the same scales binned at 5	
m elevations	2_0
Figure 8-8. Summary plot of the 2013 average ozone mixing ratio and standard	5-5
deviations measured at all sites during morning (between sunrise and	
local noon, in blue) and afternoon (noon to sunset, red). Note the	
large range of ozone concentrations in 2013 and the large	
photochemical production of ozone in the afternoons. The data in	
Figures 8-7 and 8-8 are plotted on the same scales.	5-9
Figure 8-9. Surface hourly average ozone concentrations measured at three	
dispersed sites in the Uinta Basin showing the diurnal production of	
ozone, the build-up of total ozone during an event and the rapid	
cleanout of the basin that occurs when air from outside the basin	
enters and mixes down to the surface8-	10
Figure 8-10. Ozone and temperature profiles from Ouray (OU) and Horsepool (HP)	
showing that ozone and temperature profiles were similar at these	
two site separated by 15.1 km in distance and 139 m in elevation.	
Note the cold surface temperatures and sharp temperature inversion	
at 1600 m, but no ozone difference across the inversion	11
Figure 8-11. Ozone and temperature profiles from Ouray (OU), Fantasy Canyon (FC)	
and Horsepool (HP) showing that ozone began increasing on January	
31	11
Figure 8-12. Ozone and temperature profiles from Ouray (OU), Fantasy Canyon (FC)	
and Horsepool (HP). Fantasy Canyon and Ouray are separated by 23	
km in distance and 43 m in elevation with Ouray being lower. Note	
the build-up of ozone between the surface and 1700 m beneath the	
top of the temperature inversion layer8-	12
Figure 8-13. Ozone and temperature profiles from Ouray (OU), Fantasy Canyon (FC)	
and Horsepool (HP) Feb 3, 2013. The accumulation of ozone was	
somewhat different now at the three sites with Ouray exhibiting	
higher concentrations than Fantasy Canyon or Horsepool	12

Figure 8-14.	Ozone and temperature profiles from Ouray (OU), Fantasy Canyon (FC) and Horsepool (HP) showing the depth of the ozone layer relative to the height of a 150 foot tall drill rig. This emphasizes how shallow the ozone layer is, especially at Horsepool, which is at a higher elevation
	than the Ouray or Fantasy Canyon sites
Figure 8-15.	Ozone and temperature profiles from Ouray (OU), Fantasy Canyon (FC) and Horsepool (HP) near the peak in an ozone event. Note how the ozone production is confined to a shallow surface layer and is greater at Ouray which is at a lower elevation in the basin
	Ozone profiles from the Ouray Wildlife Refuge site (OU) showing that ozone in the 120 ppb range in the noon (11:59) profile decreased during the day to 75 ppb as cleaner air from the west flushed out the stagnant methane and ozone laden air of the previous stagnation event. (Lower) The corresponding potential temperature profiles were constant over this same period with the profile at 2001 showing that mixing of the lower level air was becoming capped in the evening at ~1650 m
Figure 8-17.	(Upper) Ozone profiles from the Ouray Wildlife Refuge site (OU) showing that as the flushing (cleanout) of the basin progressed, ozone decreased throughout January 28. (Lower) Corresponding potential temperature profiles showed that well-mixed air was entering the basin and that a weak temperature inversion was beginning to develop near the surface in the evening (17:45 profile)
Figure 8-18.	(Upper) By January 29 the basin was flushed out and there was no photochemical ozone production as all the profiles were at background levels throughout the day. (Lower) Potential temperatures show that the air mass was becoming slightly more stable with a shallow temperature inversion developing near the surface in the evening
Figure 8-19.	(Upper) By January 30 ozone precursor emissions were collecting in the basin and photochemical ozone production rose from a low of 30 ppb at sunrise to 78 ppb by 15:49. (Lower) Potential temperatures show that the atmosphere was becoming appreciably more stable with a strong inversion base developing at 1600 m
-	(Upper) Ozone production on January 31 was similar to January 30 with no large carryover of ozone from the previous day. (Lower) Potential temperatures decreased and the air remained stable beneath 1650 m
Figure 8-21.	(Upper) On February 1 ozone production substantially increased over the previous day reaching 100 ppb in the 13:10 profile then decreasing to 60 ppb after sunset. (Lower) The potential temperature plots show that the atmosphere was very stable with the inversion top maintained at just above 1600 m

Figure 8-22.	(Upper) Ozone did not decrease as much over the night of February 1 as on previous nights and was in the range of 65 ppb in the morning of February 2, rising to 105 ppb by the 17:16 profile. (Lower) The air	
	remained stable with the inversion top rising to 1650 m	8-21
Figure 8-23.	(Upper) On February 3, ozone production was similar as on February 2,	
	reaching 105 ppb in the 15:46 profile then decreasing to 85 ppb by	
	18:53. (Lower) The air remained relatively stable, but the sharp	
	inversion at 1650 m observed on the prior day has somewhat	
	weakened	8-22
Figure 8-24.	(Upper) On February 4, ozone production was similar to that on	
	February 3, but the peak of 110 ppb occurred later in the afternoon at	
	18:39. (Lower) The air column became better mixed and remained	
	more uniform over the day than earlier in the ozone event	8-23
Figure 8-25.	(Upper) On February 5 ozone was 80+ ppb in mid-morning increasing	
	to 127 ppb by 16:23 mst before beginning to erode at higher altitudes	
	by 18:41. (Lower) The strong inversion at 1660 m observed in the	
	10:01 profile lost some of its strength as air warmed and mixed during	
	the day	8-24
Figure 8-26.	(Upper) Ozone remained elevated throughout the night of February 5,	
_	with the 10:10 profile showing ozone in the 100+ ppb range. Ozone	
	increased to 165 ppb by 13:50 before rapidly decreasing to the 72-78	
	ppb range above 15:50 m as clean air moved into the basin from aloft	
	and the west. (Lower) Potential temperature showing the increase in	
	potential temperature at 17:31 as fresh air, now began entering the	
	basin.	8-25
Figure 8-27.	(Upper) The profiles for February 6 show the intrusion of cleaner air	
0	from aloft from 13:50 to 17:31, then recovery of ozone in the 18:15	
	profile as ozone rich air sloshes around in the basin. (Lower) Potential	
	temperature remained relatively consistent during the cleanout, but	
	with a strong inversion beginning to develop within a few 10s of	
	meters above the cold, snow covered surface.	8-26
Figure 8-28.	(Upper) On February 7 ozone production began again as the prior	
	day's cleanout of the basin was not complete. (Lower) Potential	
	temperatures increased during the day as ozone production also	
	increased	8-27
Figure 8-29.	Free flying ozonesonde released from the Ouray Wildlife Refuge when	
	ozone in the boundary layer was in excess of 120 ppb, January 25,	
	2013. Note the shallow elevated ozone layer near the surface,	
	background ozone concentrations from 3 km to 9.5 km and then	
	stratospheric ozone concentrations exceeding 180 ppb above 10 km	8-29
Figure 8-30	Free flying ozonesonde released from the Ouray Wildlife Refuge when	
	ozone in the boundary layer was 100 ppb, February 7, 2013. Note the	
	shallow elevated ozone layer near the surface, background	

	concentrations from 2 km to 11.5 km and then stratospheric ozone
	concentrations exceeding 180 ppb above that level
Figure 8-31.	Ozonesondes mounted in the window of a NOAA van used to measure
U	ozone concentrations while driving around the Uinta Basin. This photo
	was taken during the 2012 study but a similar configuration was used
	in 2013
Figure 8-32	Comparison between the mobile ozonesonde operated on the side of
rigure 0-52.	a NOAA van and fixed ozone measurements when the van passed near
	(up to a mile difference) the Red Wash and Ouray EPA ozone monitors
	and the NOAA monitor at the Ouray Wildlife Refuge. Considering the
	timing, difference in distance and the fact the mobile van occasionally
	operated in excess of 60 mph when passing the fixed sites, the
	agreement is excellent
Figure 8-33.	Surface ozone concentrations plotted aganst altitude on a drive
	beginning in Vernal then through the eastern portion of the Uinta
	Basin, February 6, 2013. Note the the decrease in ozone (point 3) at
	1720 m crossing the ridge near Red Wash, and the large ozone
	decrease as the van began to ascend through the inversion layer at
	1720 m (Point 7) and the increase in ozone as the van descended back
	into the top of inversion layer after turning around at ~2,000 m(Point
	8)
Figure 8-34.	Contour plot of ozone concentrations above the Ouray Wildlife Refuge
	in the first ozone event presented in Figure 8-9. Note that high
	concentrations of ozone occur in mid- afternoon and are concentrated
	between the surface and 1600 m altitude8-33
Figure 8-35.	Contour plot of ozone concentrations above the Ouray Wildlife Refuge
U	showing the beginning of the basin-wide cleanout that began the
	evening of January 27
Figure 8-36.	Contour plot of ozone concentrations above the Ouray Wildlife Refuge
	the day the cleanout was essentially completed on January 29. Ozone
	concentrations of less than 50 ppb are considered background in this
	location and season
Figure 8-37	Contour plot of ozone concentrations above the Ouray Wildlife Refuge
ligure 0 57.	showing the beginning of the next ozone event. This event was also
	the focus of the NOAA aircraft flights
Figure 8-38	Contour plot of ozone concentrations above the Ouray Wildlife Refuge
rigure 8-38.	showing the production of ozone now in excess of 100 ppb leading up
	to the peak on February 6
Figure 9 20	· ·
Figure 8-59.	Contour plot of ozone concentrations above the Ouray Wildlife Refuge
	the day prior to the peak of the basin wide ozone event. Note the high
	ozone concentrations in excess of 125 ppb in the late afternoon
rigure 8-40.	Contour plot of ozone concentrations above the Ouray Wildlife Refuge
	at the peak of the basin wide ozone event. Later in the day air from
	the west began a partial basin cleanout as may be seen in the low

	ozone concentration air descending into the basin beginning around 1600 (blue area) down to 1550 m
Figure 8-41.	Contour plot of ozone concentrations above the Ouray Wildlife Refuge
	January 24 - February 7 showing the ozone event ending January 27
	and the cleanout that lasted from January 27 to the beginning of the
	new ozone production event in early February. That event peaked on
	February 6
Figure 8-42.	Bonanza power plant with buoyant exhaust plume and water vapor
	from the cooling ponds. The top of the stack is 1715.8 m and the
	plume generally rose an additional 2 to 3 stack heights before leveling
	out in the 1900 to 2200 m range. In the winter of 2013 the inversion
	top was generally between 1600 and 1750 m
Figure 8-43.	Bonanza power plant plume rising well above the inversion layer at
	1600 m before achieving neutral buoyancy and streaming westward
	out over the basin at 1900 m. Photograph by Colm Sweeney,
	airborne scientist, CIRES/NOAA
Figure 8-44	Horsepool ozone and temperature profiles on February 2, 2013
	showing the elevated ozone layer capped at 1620 m and the power
	plant plume at 1900 m. The time is the beginning of the balloon
	ascent that generally lasted from 30 to 45 minutes
Figure 8-15	Horsepool ozone and temperature profiles on February 4, 2013
riguie 0 45.	showing a well-mixed ozone layer up to 1850 m and the Bonanza
	plume at 1940 m
Figure 8-46.	
1 igule 8-40.	showing the surface ozone layer capped at 1780 m and the Bonanza
	power plant plume centered at 1920 m
Eiguro 9 47	Horsepool ozone and temperature profiles on February 14, 2013
1 igule 8-47.	showing a strong surface ozone layer capped at 1620 m and the power
	plant plume centered at 1860 m. This profile complements the data
	presented in Figure 48-9
Eiguro 9 49	Time-height cross section of ozone concentrations measured by
1 igule 0-40.	tethersondes over Horsepool January 25 - February 18, 2013 with the
	Bonanza power plant plumes highlighted. The plume on the night of
	February 14 during the cleanout was probably pushed down to 1800
	, , , , , , , , , , , , , , , , , , , ,
Figure 0.40	m by the fresh air descending into the basin
Figure 8-49.	-
	600 m AGL (2100 m) for 17:16 – 19:31 MST on 14 February 2013 at
	Horsepool. The colored line shaped like an inverted "V" represents the
	ozone measurements from the collocated tethersonde data presented
	in Figure 8-47
rigure 8-50.	Uinta Basin surface elevation contours where the purple hue
	delineates the lowest elevations in the basin bounded on the upper
	side by the ~1600 m contour. The boundary between the turquoise
	and green hues is the ~1700 m contour. Rapid, high concentration

	photochemical ozone production in the winter of 2013 occurred
	almost exclusively beneath the level of the 1700 m contour. The most
	frequent and intense ozone production occurred below 1600 m
	elevation. Rangely, Colorado is just within this zone as is Duchesne,
	Utah. The town of Dinosaur, Colorado near the Dinosaur National
	Monument is just on the edge of the high ozone production zone.
	Dinosaur could well experience elevated ozone under weak inversions
	or low altitude westerly winds
Figure 8-51	Oil and gas wells plotted along with elevation contours. A large
	number of the western basin oil wells are at elevations above the
	1600 -1700 m elevation of the temperature inversions and thus may
	not be significantly contributing precursor chemicals to the ozone
	production that occurs lower down in the Uinta Basin. This needs to
	be checked with mobile van measurements
Figure 8-52	Presentation and balloon demonstration at Uintah River High School in
ligule 8-52.	Fort Duchesne, Utah
Figure 8-53	Presentation and balloon demonstration at Vernal Middle School
inguie 0 55.	
Figure 9-1.	Natural Gas Wells in the Uinta Basin in 2011 (production, and thus
0	emissions, not necessarily distributed by well count; more production
	is concentrated in the yellow grid cells than is apparent from the
	actual number of wells)
Figure 9-2.	2011 VOC Inventory - All Emissions
Figure 9-3.	2011 NO _x Inventory - All Emissions
Figure 9-4.	Locations of produced water pond facilities in the Uinta Basin. Each
0	pond is shown as a blue square9-9
Figure 9-5.	Illustration of a typical Uinta Basin produced water facility sampled by
0	our group during winter 2012-13
Figure 9-6.	USU dynamic flux chamber on a produced water pond
Figure 9-7.	Emissions from different surface types at produced water facilities.
0	The top of the colored column is the average total emissions from four
	types of compounds, and the contribution of each type is delineated
	with a different color. The black line on top of the colored column is
	the 90% confidence interval for the average total emissions
Figure 9-8.	Emissions of organic compounds from different surface types as a
inguic 5 di	percentage of total emissions
Figure 9-9.	Toluene concentration in unfrozen produced water versus toluene
inguic 5 5.	emission rate
Figure 9-10	Change in emission rate of alkanes, aromatics, methanol, and
	methane throughout the day as temperature warms and ice covering
	a produced water pond melts

Figure 10-1.	Nested domains with horizontal resolution of 36, 12, 4 and 1.3 km,
	respectively (left). Domain 4 (right). The Uinta Basin is the low terrain
	centered at about 109.5°W longitude and 40°N latitude
Figure 10-2.	Observed (black) and simulated (red) temperature vertical profiles at
	Roosevelt (a, c) and observed (solid) and simulated (dash)
	temperature vertical profiles at Ouray (blue) and HorsePool (red) (b,d).
	Observational data for Roosevelt and Ouray/Horsepool sites were
	collected from rawinsonde measurements conducted by the
	University of Utah and from ozonesonde measurements conducted by
	NOAA, respectively10-3
Figure 10-3.	Comparison of simulated (right) and NOAA analysis (left) snow depths10-4
Figure 10-4.	Temporal evolution of hourly simulated (line) and observed (dot) near-
	surface wind speed (m/s) averaged over 61 monitoring sites within
	domain. Observational data were obtained from Western Regional
	Climate Center. SIM_REF and SIM_FINE stands for reference and fine
	resolution simulation, respectively10-5